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The unbinding of kink pairs on domain walls in the fully frustrated XY model (on square or triangular
lattices) is shown to induce the vanishing of phase coupling across the walls. This forces the phase
transition, associated with unbinding of vortex pairs, to take place at a lower temperature than the other
phase transition, associated with proliferation of the Ising-type domain walls. The results are applicable
for a description of superconducting junction arrays and wire networks in a perpendicular magnetic field,
as well as of planar antiferromagnets with a triangular lattice.
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A fully frustrated (FF) XY model can be defined by the
Hamiltonian,

H � 2J
X

�ij�
cos�wj 2 wi 2 Aij� , (1)

where J . 0 is the coupling constant, the fluctuating vari-
ables wi are defined on the sites i of some regular two-
dimensional lattice, and the summation is performed over
the pairs of nearest neighbors �ij� on this lattice. The
nonfluctuating (quenched) variables Aij � 2Aji defined
on lattice bonds have to satisfy the constraint

P
Aij � p

(where the summation is performed over the perimeter of
a plaquette) on all plaquettes of the lattice.

For two decades, such models (on various lattices) have
been extensively studied in relation to experiments on
Josephson junction arrays [1], in which wi can be associ-
ated with the phase of the superconducting order parame-
ter on the ith superconducting grain, and Aij is related
to the vector potential of a perpendicular magnetic field,
whose magnitude corresponds to a half-integer number of
superconducting flux quanta per lattice plaquette. A pla-
nar antiferromagnet with a triangular lattice also can be
described by the Hamiltonian (1) (with Aij � 6p).

The ground states of the FF XY models on square [2] and
triangular [3] lattices are characterized by the U�1� 3 Z2
degeneracy, which suggests the possibility of two different
phase transitions. One of them (the Berezinskii-Kosterlitz-
Thouless transition [4–6]) can be associated with unbind-
ing of vortex pairs and the other with proliferation of the
Ising-type domain walls.

Teitel and Jayaprakash [7] have proposed that the tem-
perature TV of the vortex pair dissociation cannot be higher
than the temperature TDW of the phase transition associated
with domain wall proliferation. The arguments supporting
this conjecture have been put forward in Refs. [8–10] and
are related to the presence on corners of domain walls of
fractional vortices, which are expected to screen the inter-
action of integer vortices at T . TDW.

The application of the Hubbard-Stratanovich transfor-
mation [11] to the FF XY model on a square lattice allows
0031-9007�02�88(16)�167007(4)$20.00
one to reduce it [12] to the system of two coupled unfrus-
trated XY models, which in the limit of strong coupling
becomes equivalent to the so-called XY -Ising model:

H � 2K
X

�ij�
�1 1 sisj � cos�wi 2 wj� , (2)

where si � 61 is the auxiliary Ising-type variable. In this
model, the coupling of the phase variables wi across any
domain wall is completely absent. Although this property
appears as a direct consequence of taking (without any jus-
tification) the strong coupling limit, and such a description
fails to take into account the existence of fractional vor-
tices, it has been suggested [13] that the XY-Ising model
may turn out to be a reasonable approximation for investi-
gation of the FF XY model.

In the present Letter, we demonstrate that, in the FF XY
model on square or triangular lattices, the phase transition
on a single domain wall, which takes place at TK , TV

and consists of dissociation of pairs of logarithmically in-
teracting kinks [14], induces for T . TK the loss of phase
coupling across the wall. This indeed makes the behav-
ior of the FF XY model analogous to that of the XY-Ising
model. We also show that the suppression of the phase cou-
pling between different Ising domains leads to TV , TDW,
at least when the phase transition associated with domain
wall proliferation is a continuous one.

The FF XY model on a square (or triangular) lattice
being one of the simplest examples of a system with
nonperturbative coupling between continuous and discrete
degrees of freedom, the results are of interest not only in re-
lation to experimental realizations mentioned above, but in
a more general context of two-dimensional statistical me-
chanics. In particular, we discuss in the conclusion their
consequences for the interplay between the roughening and
the reconstruction transitions [15,16]. We do not consider
here the FF XY models on honeycomb [10] and dice [17]
lattices, which are characterized by much more developed
discrete degeneracies.

In the ground state of the FF XY model on a
square lattice, the gauge invariant phase differences
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uij � wj 2 wi 2 Aij on all bonds are equal [when
reduced to the interval �2p , p�] to 6p�4 in such a
way that summation of uij over the perimeter of each
plaquette gives ps, where s � 61 is called chirality.
The plaquettes with positive and negative chiralities
regularly alternate with each other, forming the checker-
board pattern [2]. The discrete twofold degeneracy of the
ground state corresponds to the change of the signs of all
chiralities.

A domain wall can be defined as a topological ex-
citation separating two ground states which cannot be
transformed into each other by a continuous rotation.
Schematically, it can be represented as a line on a lattice,
each link of which separates two plaquettes with the same
chirality (Fig. 1). A domain wall is characterized by a
finite energy per unit length; therefore at low temperatures
all domain walls which appear as thermal fluctuations
form closed loops.

If one considers an infinite straight domain wall and
fixes the state (the values of wi) on one side of the wall,
the state on the other side of the wall cannot be arbitrary
and depends on the position and on the orientation of the
wall [8,10]. If the wall is displaced by one lattice constant,
the values of wi on the other side of the wall are changed
by p.

The presence of a kink (of the minimal height) on a
domain wall [Fig. 1(a)] produces a mismatch of p between
the states which have to be obtained when crossing the left
and the right parts of the wall. This discrepancy has to be
taken care of by a fractional vortex with the topological
charge 61�2 located on the kink. The energy of such
a simple kink is therefore logarithmically divergent. The
kinks of the double (or, generally, even) height [Fig. 1(b)]
do not introduce any mismatch, and their energy is finite.

Let us consider an infinite domain wall, introduced, for
example, by an appropriate choice of boundary conditions.
At low temperatures, it should contain a finite concentra-
tion of free double kinks, but all simple kinks have to form
neutral pairs. Therefore, although the fluctuations of the
domain wall diverge, the symmetry with respect to its shift
by one lattice constant is broken.

With an increase of temperature, the phase transition in
the one-dimensional logarithmic gas of simple kinks will
lead to dissociation of neutral pairs and to the appearance
of a finite concentration of free simple kinks [14]. As fol-
lows from the renormalization group analysis of Ref. [18],
this takes place when the prefactor of the logarithmic in-

(a) (b)

FIG. 1. A domain wall with (a) a simple kink and (b) a double
kink. Plusses and minuses show the signs of chiralities.
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teraction of simple kinks is equal to 2T , that is, at

TK �
p

4
G�TK� . (3)

Here G�T� is the helicity modulus, the macroscopic pa-
rameter describing the effective stiffness of the system
with respect to continuous twist of w. At zero temperature
G�0� � J�

p
2, whereas the unbinding of integer vortices

“in the bulk” takes place at [19]

TV �
p

2
G�TV� , (4)

that is, above TK. The numerical evidence for unbinding
of kink pairs at TK , TV has been obtained by Lee et al.
[14], who, however, mistook this phase transition for the
roughening transition of domain walls.

The phase transition associated with unbinding of pairs
of simple kinks leads to a restoration of the symmetry be-
tween the odd and the even positions of the domain wall
and also to the loss of the effective phase stiffness across
the wall. Any attempt to create a phase gradient perpen-
dicularly to the wall will be relaxed due to the motion of
free simple kinks along the wall in different directions (in
accordance with the sign of the topological charge) under
the action of Magnus force. The situation is analogous to
what happens in the bulk above TV, when the presence of
free vortices prevents the creation of any stationary phase
gradient (supercurrent). For T , TK, all simple kinks are
bound in neutral pairs and their relative displacement re-
quires a finite energy, which means that the phase stiffness
across the wall remains finite.

Analogously, a phase gradient parallel to the wall will
not penetrate on the other side of the wall. Instead there
will appear a difference in concentration of simple kinks
with positive and negative topological charges, which will
compensate for the difference in phase gradients on both
sides of the wall. Although the creation of such a differ-
ence in concentrations requires some energy, this energy is
proportional to the length of the wall, whereas penetration
of the phase gradient across the wall would require the ad-
ditional energy which is proportional to the total area of
the domain on the other side of the wall. The same hap-
pens on grain boundaries in crystals, where the difference
in orientations is taken care of by a sequence of disloca-
tions of the same sign.

Note that both mechanisms work only at length scales
which are large in comparison with the inverse linear con-
centration of free simple kinks. Nonetheless, their exis-
tence implies that at large length scales the FF XY model
can indeed be approximated by the XY-Ising model as
proposed in Refs. [12,13]. Naturally, at T , TDW such
equivalence works only in a small vicinity of TDW, in
which the correlation length, defined in terms of s, is much
larger than the typical distance between free simple kinks
on a domain wall.
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The same conclusions are valid in the case of the antifer-
romagnetic XY model on a triangular lattice. The ground
state of this model consists of three sublattices, the values
of wi in which differ by 62p�3, and also is characterized
by the U�1� 3 Z2 degeneracy [3]. If the ground state on
one side of a straight domain wall is fixed, the state on the
other side of the wall can be obtained by a permutation of
values of wi on any two sublattices and subsequent rota-
tion of all variables by p [9].

The three available options correspond to three posi-
tions of the wall and differ from each other by global
rotation by 62p�3. Therefore, the simple kinks separat-
ing the straight parts of a domain wall have to behave as
fractional vortices with topological charges 61�3. Ac-
cordingly, the phase transition associated with kink pairs
unbinding on an isolated infinite domain wall takes place
at TD

K � �p�9�G�TD
K �, which is again below TV. As in the

case of a square lattice, this phase transition leads to the
loss of phase coupling across a domain wall and makes
the behavior of the system analogous to that of the XY-
Ising model.

The helicity modulus G can be defined, in particular,
through the response of a system to application of the
specially chosen boundary conditions (see, for example,
Ref. [20]). The important property of the XY-Ising model
is that, as soon as there is at least one domain wall crossing
the whole system, the variables w at opposite boundaries
are completely decoupled from each other, which means
G � 0. In the thermodynamic limit this takes place at any
temperature higher than TDW.

At T , TDW an externally imposed twist of w in any
typical configuration of si can be carried only by the largest
(infinite) cluster formed by the sites with the same sign
of si [note that the variable si of the XY-Ising model (2)
should be associated with the staggered chirality of the
FF XY model and not with the chirality itself]. All other
clusters have finite size and therefore are insensitive to
boundary conditions.

In two dimensions (in contrast to three), the point of
the phase transition of the Ising model coincides with the
percolation transition in the system of spin clusters [21],
so the density of the infinite cluster decays on approaching
TDW from below as r�T� ~ j2Dd

p . Here Dd � 2 2 d �
5�96 [22] is the deviation of the fractal dimension d of the
infinite cluster (at T � TDW) from its Euclidean dimension
and jp�T� ~ �TDW 2 T �2n is the percolation length, the
temperature dependence of which in the Ising model is
described by the same exponent n � 1 [23] as that of the
correlation length j.

Therefore the bare (i.e., not reduced by the fluctuations
of w) helicity modulus G0�T� on approaching TDW has to
decrease algebraically: G0�T� ~ �TDW 2 T�t , at least as
fast as r�T� (actually much faster), which can be shown
with the help of the variational calculation. The vortex
pair dissociation takes place as soon as the (renormalized)
value of G is reduced to �2�p�T, that is, below TDW. For
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TDW ø T
�0�
V [where T

�0�
V � �p�2�G�0� is the naive es-

timate for TV], one therefore can expect TDW 2 TV ~

�TDW�T
�0�
V �1�t. The two transitions can happen simultane-

ously only if they occur as the first-order phase transition
with a larger than universal jump in G.

According to our results, the analogous behavior can be
expected in the FF XY models. However, in that case the
dependence of TDW 2 TV on TDW will be more compli-
cated, since the effective reduction to the XY-Ising model
is developed only at the length scales which are large
in comparison with typical distance between free simple
kinks. The idea that G0�T � is strongly suppressed on ap-
proaching TDW is supported by a comparison of the results
of numerical simulations of the same system at zero and
full frustration [7], which shows that in the latter case the
drop of G with an increase of temperature for the same size
of the system is more sharp.

In conclusion, until now the use of the XY-Ising model
for the description of the properties of the FF XY model
on a square lattice [13,24] could be considered a rather
arbitrary procedure. Since application of the Hubbard-
Stratanovich transformation [11] to the FF XY model on
a triangular lattice is known to produce a coarse-grained
Hamiltonian [12] with a wrong symmetry of the ground
state [U�1� 3 Z3 instead of U�1� 3 Z2], one always could
doubt if the application of the same transformation on a
square lattice does not lead to the loss of some important
properties of the original model.

An argument in favor of such an approach has been put
forward by Knops et al. [20], who have shown, with the
help of the numerical transfer matrix diagonalization, that
at T � TDW the free energy of the 19-vertex version of
the FF XY model with increasing the system size becomes
insensitive to the boundary conditions inducing the twist
of w. The authors of Ref. [20] have interpreted this as
evidence for irrelevance at criticality of the coupling of
w across a domain wall. The same observation could be
alternatively interpreted as evidence for TV , TDW.

In the present Letter we have demonstrated that in the
FF XY models on square and triangular lattices the loss of
the phase coupling across domain walls is achieved already
at temperatures below TV due to the presence on domain
walls of free simple kinks. We also have shown that the
dissociation of vortex pairs has to take place at TV , TDW,
because, on approaching TDW from below, the part of the
system which reacts to external twist becomes more and
more dilute [25]. This makes the scenario of a single phase
transition with a novel critical behavior [9,26] impossible,
at least for T . TK.

These conclusions are not dependent on the particular
form of the interactions in the system (as soon as the de-
generacy of the ground state remains the same), and are ap-
plicable, for example, also when the interaction of further
neighbors is taken into account [27]. They are in agree-
ment with the results of the most recent numerical simula-
tions of the FF XY models on square [28,29] and triangular
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[30] lattices, as well as of the equivalent (half-integer)
Coulomb gas [31] and of the solid-on-solid (SOS)–Ising
model [32] which is (partially) dual to the XY-Ising model.

Recently Lee et al. [32] have demonstrated that the gen-
eralized XY-Ising model is dual to the SOS-Ising model
introduced by den Nijs [15] for the coarse-grained descrip-
tion of the interplay between roughening and missing row
reconstruction on a surface of a crystal with a simple cubic
lattice. The proposed phase diagram of this model can be
found in Fig. 3 of Ref. [16]. For the case of D � 0 (which
corresponds to the XY -Ising model with a complete ab-
sence of phase coupling across domain walls), it contains
two regions, one (at R , 0) with separated and the other
(at R . 0) with coinciding phase transitions. Our analy-
sis, as well as the results of the numerical simulations of
Ref. [32], implies that the two transitions should be sepa-
rated for both signs of R.

It seems worthwhile to mention that the conclusion
on a larger than universal value of G�TV� in the FF XY
models [29–31] has been obtained with the help of the
Weber-Minnhagen (WM) scaling analysis [33], which is
based on the same renormalization group equations [6]
as the universal prediction (4) and, accordingly, does not
even allow for a possibility of a nonuniversal value of
G�TV�. The results of Refs. [29–31] therefore should be
interpreted as evidence for deviation from the WM scal-
ing. The reasons for such a deviation can be easily un-
derstood. It follows from our analysis that, even when the
presence of vortex pairs (the only factor taken into account
in the framework of the WM analysis) is neglected, G in
the vicinity of TDW has to be strongly scale dependent,
because the effects related to suppression of the effective
stiffness across domain walls develop only with the in-
crease of scale. Thus it is important not to confuse the two
mechanisms for suppression of G. The method for plot-
ting the data, which allows for checking in what interval
of length scales the WM scaling really holds, has been re-
cently suggested in Ref. [27].
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