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Fluctuation-induced vortex pattern and its disordering in the fully frustrated XY
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A highly degenerate family of states, in which the adjacent plaquettes with the same sign of vorticity form
clusters of thre¢proposed in Phys. Rev. B3, 134503(2001)], is proven to really minimize the Hamiltonian
of the fully frustratedXY model on a dice lattice. The harmonic fluctuations are demonstrated to be of no
consequence for the removal of the accidental degeneracy of these states, so a particular vortex pattern can be
stabilized only by the anharmonic fluctuations. The structure of this pattern is found and the temperature of its
disordering due to the proliferation of domain walls is estimated. The extreme smallness of the fluctuation-
induced free energy of domain walls leads to the anomalous prominence of the finite-size effects, which
prevents the observation of vortex-pattern ordering in numerical simulations. In such circumstances the loss of
phase coherence may be related to the dissociation of pairs of fractional vortices with the topological charges
+1/8. In a physical situation the magnetic interactions of currents in a Josephson junction array will be a more
important source for the stabilization of a particular vortex pattern then the anharmonic fluctuations.
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I. INTRODUCTION A triangular lattice also allows for the construction of a

The uniformly frustrated<Y model has been introduced doubly degenerate pattern in which the vorticities are of the
by Teitel and Jayaprakasfior the description of a regular OPPOSite signs for all pairs of neighboring plaqueftédt
array of superconducting islands connected with each othdHs out to be possible to demonstrate that the thermody-
by Josephson junctiorf@ Josephson junction arfyin the ~ namic prppe.rtles qf the fully frustratedy model on a_ltrlan—
presence of a uniform magnetic field. During the last twogular lattice(including the sequence of phase transitjome
decades the main attention has been concentrated on tReémpletely analogous to those of the model on a square
investigatiod-*6of so-called fully frustrated modelsn vari- ~ lattice*
ous lattice, which in terms of array correspond to having a ~ On a honeycomb lattice the situation is more complex
half-integer number of the superconducting flux quanta pebecause the family of ground states of the fully frustrat&d
plaquette’> The models belonging to this class can be alsomodel is characterized by an infinite accidental degenéracy,
used for the description of a planar magnet in which thewhich can be described in terms of the formation of parallel
neighboring spins can have either ferromagnetic or antiferrozero-energy domain walfs!®*8In such a case the structure
magnetic interaction, the number of the antiferromagnetiof the vortex pattern at low, but finite temperatures cannot be
bonds in each plaquette being otd. determined without taking into account the contribution to

The ground states of the uniformly frustrat¥® models  free energy from the small amplitude fluctuations in the vi-
are characterized by the combination of the continuous andinities of different ground states. This mechanism of the
discrete degeneraciésThe former is related to the invari- removal of an accidental degener&t3fis often referred to
ance of energy with respect to the global phase rotationas “order-from disorder.” In systems with a continuous de-
whereas the latter can be discussed in terms of the formatiogeneracy it is usually sufficient to compare the contributions
of a particular vortex pattern. In the fully frustrated modelsfrom harmonic fluctuation&’-22
the numbers of plaquettes which contain positive and nega- Recently it has been discovered that in the fully frustrated
tive vortices should be equal to each other. XY model on a honeycomb lattice the order-from-disorder

Since vortices of the same signs repel each other, the emechanism does not work at the harmonic Ieferhe dif-
ergy is minimized when the vorticities of neighboring ference between the free energies of fluctuations appears
plaguettes are of the opposite signs. On a square lattice thamly when one takes into account the anharmonicities, and,
requirement can be simultaneously satisfied for all pairs ofs a consequence, is proportional not to the first, but to the
neighboring plaquettes, which allows one to conclude thasecond power of temperature. This feature leads to the un-
the ground state has the checkerboard structure and a twofolgsual prominence of the finite-size effeéts.
discrete degeneraéy.With increase of temperature two dif- The present work is devoted to the investigation of the
ferent phase transitions can be expected to take plane,of  fully frustratedXY model on a dice latti¢é (see Fig. L Like
which is related to the loss of phase coherence and the otheguare, triangular, and honeycomb lattices, the dice lattice
can be associated with vortex-pattern disordering. The analyconsists of identical plaquettéahich in this case are rhom-
sis of the mutual influence between the two types of topobic) and equivalent bonds. Since the invariant description of
logical excitations shows that in the case of a square lattica Josephson junction array can be achieved only in terms of
the former has to take place at lower temperature than theariables which are defined on lattice bondke gauge-
lattert invariant phase differences, see E4).], and not on sites, the
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dice lattice can be considered as one of the four basic lattices In Sec. V we analyze how the vortex pattern selected by
for the investigation of the uniformly frustratedy models.  anharmonic fluctuations becomes disordered when one takes
On more complex lattices(containing nonequivalent into account the fluctuations of another type, namely, the
plaguettesthe correspondence between an array and a fruformation of domain walls, and propose an estimate for the
trated XY model is likely to be broken as a consequence oftemperature of the phase transition which can be associated
the phenomenon of the “hidden incommensurability,” relatedwith the proliferation of such defects. In this section we also
to the redistribution of magnetic field between the plaquettesliscuss the finite-size effects which interfere with the obser-
by screening currents in asymmetric superconductingation of vortex-pattern ordering in finite samples and show
islands?42° that in the considered system they are extremely prominent

Recently a hypothesis has been but for&tHat in the  (exactly for the same reasons as in the case of a honeycomb
ground states of the fully frustratedY model on a dice lattice).
lattice the vortices of the same sign form three-vortex clus- In Sec. VI the interplay between the vortex-pattern disor-
ters (triad9, and a highly degenerate family of states hasdering and the loss of phase coherence is considered,
been proposed, which satisfies this criterion and can be davhereas Sec. VIl is devoted to a discussion of another
scribed in terms of the formation of a network of intersectingmechanism of the removal of an accidental degeneracy re-
zero-energy domain walls. In Sec. Il we present a rigorousated to magnetic interactions of currents in the aff.In
proof that these states indeed correspond to the absolutee concluding Sec. VIII our results are summarized and
minimum of energy. compared with the results of numerical simulations of Cat-

Section Ill is devoted to the analysis of harmonic fluctua-audella and Fazié®
tions. We reveal the existence of a hidden gauge symmetry, The interest in magnetically frustrated systems with dice
which allows one to conclude that for a particular choice oflattice geometry has appeared after Vidakl?’ discovered
boundary conditions the set of the eigenvalues of the harhat at full frustration the ground state of a single electron,
monic Hamiltonian is exactly the same for all ground stateswhich can jump between the nearest sites of a dice lattice, is
As a consequence, the free energy of the harmonic fluctuanfinitely degenerate and that the corresponding wave func-
tions cannot be the source for the selection of a particulation can be chosen as an arbitrary linear combination of an
vortex pattern. This conclusion is valid also for quantuminfinite number of extremely localized wave functions, each
generalizations of the model. All these properties resemblef which covers only a finitgand small number of sites.
very much the analogous properties of the fully frustraf&d  Since it is known that the structure of the superconducting
model on a honeycomb latti¢é. state in a wire network is determingith the mean-field ap-

In Sec. IV the lowest order contribution to the free energyproximation by the structure of the ground-state wave func-
of anharmonic fluctuations is considered. In particular, thetion of the single-electron problem with the same geonrétry,
gauge symmetry mentioned above is applied to demonstratesuggestion has been put forward that at full frustrateion the
that the contribution related to the fourth-order terms in thesuperconducting state in a dice network may have a disor-
Hamiltonian is the same for all ground states and, thereforegered (glassy-like structure?’-2° However, recently it has
is of no consequence for the selection of a particular vortesoeen showff that the inclusion into analysis of the forth-
pattern. The continuous approximation is used to show thadrder term of the Ginzburg-Landau functional strongly de-
the fluctuation-induced interaction of zero-energy domaircreases the ambiguity in the determination of the structure of
walls is extremely weak and decays inversely proportionallythe superconducting state in a fully frustrated wire network
to the fifth power of the distance between them. The comwith the dice lattice geometry. The set of states minimizing
parison of the numerically calculated free energies of anharhe free energy of such a network turns out to be in one-to-
monic fluctuations in different periodic ground states allowsone correspondence with the set of the ground states of the
us to establish the vortex pattern which can be expected to Helly frustrated XY model discussed in this paper. In recent
stabilized at low temperatures and to find the fluctuationyears magnetically frustrated wire networks and Josephson
induced free energy of zero-energy domain walls. junction arrays with the dice lattice geometry have both been
the subject of active experimental investigatiéts?

Il. THE MODEL AND THE GROUND STATES
A. The definition of the model

A uniformly frustratedXY model can be defined by the
Hamiltoniar¥?

H=-J> codgx— ¢~ A, 1)
(k)
where the summation is performed over all borife of a
FIG. 1. Dice lattice is the simplest periodic lattice which can beregular two-dimensional lattice. In terms of a Josephson

constructed from identical rhombic plaquettes with three differenjunction arrayJ is the Josephson coupling constant of a
orientations. single junction, fluctuating variables are the phases of the
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order parameter on superconducting grgifierming the ar-  each other in such a way that each bond connects two sites

ray, whereas quenched variables, with different coordination numbers. Below we will always
o (T use index to denote the threefold coordinated sites of a dice

Ay = _Wf drA(r), 2) lattice and inde) to denote the sixfold coordinated sites. For

@, r example, the bongjk) connects the sixfold coordinated site

i ) ! j with the threefold coordinated site
are defined by the integral of the vector potenéiat) of the The minimization of the Hamiltoniafil) with respect to
external magnetic field along the borifk), o being the 4 yariablesg, for the given values of the variableg can
superconducting flux quantum. The form of Efj) assumes pe performed exactly. To describe the result of this procedure
that the currents in the array are sufficiently small, so theift s convenient to introduce also the gauge-invariant phase
proper magnetic fields can be neglected. differencesy;;, =—x;; defined on the bonds of the triangular
~ When the magnitude of the field corresponds to a halfyattice 7 formed by the sixfold coordinated sit¢sA natural
integer number of flux quanta per plaquette, the directed suRyay to do it consists of requiring that for each triangle
of Aj=-Ay; along the perimeter of a plaquette in the posi-formed by the siteg, j’, andk (wherej andj’ are the nearest
tive direction(which below is designated &%) has to sat-  pejghbors ofk) the sum of the three gauge-invariant phase
isfy the constraint differences taken along its perimeter in the positive direction
_ should be equal to #/2 modulo 27, where the sign should

% Ay = m(mod 2m) 4 be the same for all triangles. In what follows we assume this
sign to be negative,
on each plaquette of the lattice. In such a case the model is
called fully frustratecd. In a more general case of a uniformly Xjj» + O+ 6= — m/2(mod 2m). (7)
frustratedXY model, the right-hand side of E() should be

replaced by 2f(mod 2m), where the frustration parameter ~ INC€ Xjj*=—xjj, the constrain(5) then automatically fol-
. . -Aows from Eqg. (7). On the other hand, on each triangular

blagquette of7 the directed sum of the variablgg;: has to

terms of the number of flux quanta per plaquette. It is suffi-= <, X
g per pad satisfy the constraint

cient to consider the intervaﬂe[O,%], because all other
values off can be reduced to this interval by a simple re-
placement of variablesThe term “fully frustrated” is used
for the case of =1/2, themaximal irreducible value of.
Since both variablesy; and variablesA;, depend on a which can be obtained by summation of E@) for three
choice of a gauge, it is often more convenient to describeeighboring triangles with the common cke
different states of the system in terms of the gauge-invariant The minimization of
phase differences,

|

3
O = ek = @) = A =~ by, (4) Ex=-J> cosf
a=1

defined on lattice bonds. Below we will always assufjeto
be reduced to the intervét, 7). It follows from the defi-  (wherej, with a=1,2,3 are théhree nearest neighbors lof
nition of these variables that in the fully frustrated modelon a dice lattice numbered in the positive direcjionth
they have to satisfy the constraints, respect togy for the given values ofy; ;. x,i,, and x;,j,
satisfying the constrain®) gives
>, 0= m(mod 2m), (5) |
O Ec=—JIV3-2Y,

completely analogous to Ed3). One usually says that a

given plaquette contains a positiver negative half-vortex

when the left-hand side of E¢5) is equal to 4 (or —m). Yi=siny; ; +siny; ; +siny;; < 3/2.

Different minima of the Hamiltonian(1) (including the 12 zs 1

ground statgscan be then identified in terms of a corre-  SinceE(Y)=-Jy3-2Y is a concave function of and the

sponding vortex configuration. sum of the variable¥, over the whole lattice with the peri-
The variation of Eq(1) with respect top; results in the  odic boundary conditions should be equal to zero, the abso-

current conservation equation for the sjtehe value of the lute minimum of

current in the junctior{jk) being given by

where

ik = 1o Sin G, (6) : :% E(YY

wherely,=(2e/#)J is the critical current of a single junction. on such a lattice is achieved wh¥p=0 for all k. In the next

section we demonstrate that this requirement can be simulta-

neously satisfied on all plaquettes. Accordingly, the_value of
The dice lattice(Fig. 1) is formed by two types of sites, energy in the absolute minimum is given Ig=-2v3JN,

with the coordination numbers three and six, connected withwhereN is the total number of the sixfold coordinated sites.

B. Minimization of energy
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C. Construction of ground states —siny; —siny, —sinyg =0,
. In the case of an isolated triangle the system of two equay e then satisfied automatically, as follows from the summa-
tions tion of Egs.(9) and Eqs(10), respectively.

We have found that the numerical solution of the system
of six equationdEgs. (9) and (10)] by an iterative method
always converges to the solution shown in Figb)2or to
another analogous solution in which variabjeare equal to
for three variableg;, x,, and x; has an infinite number of 0, -=/4, and 37/4 on one-half of the triangular plaquettes
solutions. However, the requirement to match the solutionand to s, 7/4, and 37/4 on the other half. Note that each
on all triangular plaquettes df leads to the removal of this variable y belongs to two neigboring plaquettes, but mani-
continuous degeneracy. fests itself on them with the opposite signs. The same results

Since the form of the constraifB) corresponds to having are also obtained when one assumes that the elementary cell
one-quater of flux quantum per plaquette, the minimal elhas a different shape, shown in FigcR
ementary cell whose periodic repetition allows one to con- Quite remarkably, an attempt to construct a solution with
struct a periodic solution consists of four triangles. Such a larger elementary cell leads to an overdefined system of
solution can be described by six variablgs Figure Za) equations. For example, an elementary cell consisting of
shows how they can be defined for a particular choice of theight triangles requires one to introduce 12 variables
shape of an elementary cell. These six variables have to satrhich have to satisfy seven independent constraints of the
isfy three flux quantization constraints of the form given byform (8) and seven independent equations of the form
Eq. (8): Y\ =0. Apparently, one cannot expect a system of 14 equa-

_ tions for 12 variables to have a nontrivial solution which
xitxetxs=m2, (98 Cannot be constructed from the solutions obtained for a four-
triangle elementary cell. Thus the reduction of the problem to
Xa* X5+ X6 =2, Ob) 4 triangular lattice has allowed us to make a conclusion on
the size of the elementary cell which would be hardly pos-
~ X3~ Xa~ X5= 72, (99) sible in the framework of analysis in terms of the original
variablesé;, defined on the bonds of a dice lattice.
In Fig. 2(d) the structure of the elementary cell of Fig.

X1t X2+ x3=ml2,

siny; +siny, +siny; =0,

and three equations of the for¥y=0:

siny, +siny, +siny;=0, (108 2(b) is shown in terms of the variableg,. Here single,
double, and triple arrows correspond, respectively, to three
sin x4+ sinys + sinyg =0, (10b)  different values oft,
. . . 1 1 1
—sinys—sinys—sinys=0, (100 0, 3=arcco$ =+ —=|, 6,=arcco$—|,
' V3 V6 V3

which, according to the results of Sec. Il B, is required for _
the minimization of energy. The fourth constraint, satisfying the constraints

_Xl_XZ_X6:_37T/21 02_01:’”/4, 01+ 03=7T/2, 92"‘ 03=37T/4,

and the fourth equation of the fori=0, which lead to the fulfilment of Eq(5) on all rhombic
plaguettes, and the current conservation equation,

(a)NXITX47 sin 6, + sin 6, = sin 65,

X3 X2 X6 X5 X3 the form of which follows from Eq(6).
LX] \ Y4 \4 /\ _ The most compact way of.il_lustrating a struc.ture.of a
given state(a local or global minimum of the Hamiltonian
X3 X5 consists of showing which plaquettes are occupied by posi-
1 u c . . - ) -
(b)/i_w/ A\ v/ _7 (©) Y4 tive and which plaquettes by negative half-vortices. In Fig.
0 3r/4 ® 3x/4 0 3(a) this approach is used to demonstrate the structure of the
4 \/ 4_3/ X3 X2 X6 X5 ground state which is obtained by the periodic repetition of
m/ m/ L ) E!é ) A the elementary cell shown in Fig(d). Notice that positive
X1 X1 and negative half-vortices are grouped into clusters of three
(d) (triads. The rules which allow one to restore the values of

0y for each bond from the structure of the vortex pattém
a ground statecan be found in Ref. 13.
Since positive and negative half-vortices can be consid-
FIG. 2. Construction of a periodic ground state} a possible ~ ered as occuping the cites of the dual latt{wéhich in the
structure of an elementary cellp) one of the solutions of Eqg9) present case is kagomelattice), the structure of a given
and (10); (c) an alternative elementary cell; arid) the same el- state of the fully frustrateXY model on a dice lattice can be
ementary cell as irfb), but in terms of6;. compared with the structures of different states of the anti-
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ferromagnetic Ising model onkagomdattice. In particular, Again, there can exist an arbitrary number of the type Il
according to Wolf and Schotf,in the framework of the domain walls parallel to each other. By inserting them at
Ising model the state with the structure shown in Fi@®) 3  every possible position one obtains one more periodic
selected when7,> 7,>7,>0 and all other couplings are ground state shown in Fig(®, in which all triads have the
equal to zero. Herg is the coupling constant fath neigh-  ygified shape. Alternatively, one can start the whole con-
bors on akagomelattice, and we have used the notation of g¢y,ction from the periodic state of Fig(e3 and obtain the
Rgf.hiG forfthe Elasrs]lflcatlon of dice lattice plaquettes aate of Fig. 8) by introducing a dense sequence of domain
neighbors of each other. - - ; ;
The ground state whose structure is shown in Figd) 2 \évzftl)l|z on crossing which the same rule, EG1), is appli

and 3a) allows for the creation of infinite domain walls The zero-enerav domain walls of different tvpes can cross
which brake the periodicity of this state but does not cost any h oth ith 93; . : H yP it foll
energy'3 These zero-energy domain walls can be of the twgoac! Other without increéasing energy. HOwever, 1t 16/lows

t from the rule for the transformation of the state induced by
ypes. i ,

Figure 3b) shows an example of a zero-energy domaintn€ type I domain walldescribed abovethat a type Il do-
wall of the type I. Note that the orientations of triads formedM&in wall should change its orientation ky'3 each time it

by negative half-vorticeswhite plaquettes are different ~ crosses a type | domain walee Fig. &)]. A dense network
above and below the wall. The configuration of arrogs- ~ ©Of zero-energy domain walls of both types constructed on the
fining the values of the variables,) after crossing such a background of statéa) leads to the periodic ground state
wall can be obtained from the old configuratitn the ab-  shown in Fig. 8g). The structures of the periodic states,
sence of the wallby its reflection with respect to a line (c), (€), and(g) in terms of the variableg;, are shown in Fig.
which is perpendicular to the wall and subsequent inversio® of Ref. 26.

of all arrows. There can exist an arbitrary number of such Note that the formation of zero-energy domain walls is
domain walls in parallel to each other. By creating them atelated to the changes of the orientation of vortex trigohsl,
every possible position one obtains another periodic grounth the case of type Il domain walls, also of their shapbst
state shown in Fig. @). does not lead to the appearance of vortex clusters of other

Figure 3d) shows an example of zero-energy domainsjzes.

wall of the type Il. After crossing such a wall the variabkes

are changedin comparison with what they would be in the

abs_ence of the Wg)l_laccordlng to an even more simple rule, IIl. HARMONIC APPROXIMATION
which can be codified as
A. Two families of eigenmodes
6, 05, 63— 0, 06— 6, (12) 9

Note that both black and white triads have different orienta- The Hamiltonian describing the harmonic fluctuations in
tions on two sides of the wall, whereas at the wall the shapéhe vicinity of one of the ground states described in Sec. Il C
of white triads is modified. can be written as
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FIG. 3. The structure of some ground states. The plaquettes with positive vorticities are marked in black.
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2_1 ) remarkably, in all the ground states described above these
H' = E(Ek) Ji(Uj = v, (12)  coupling constants acquire only two values,
j

whereu; are deviations of the variableg from their equi- 1= 2315 = iﬁ (189

librium values on sixfold coordinated sitas, are analogous Js  3V3

deviations on threefold coordinated sites and the coupling

constantsly = J cos#; acquire one of the three possible val- (J,+33)3, 2

ues Ke=—"7F"—"="F=, (18b)
Js 3V3

Ji3= (i_ + i_)J J,= i_ (13)  which differ from each other by a factor of 2. When a half-
' V3 6 V3 vortex in the plaquettéjk’j’k”) is the central vortex of a

triad to which it belongs,K; =K;, whereas otherwise

gjjrsz. In all the ground states described in Sec. Il C these

SPupIings are distributed between the bonds7ah such a
vay that in each triangular plaquettes one bond has
ij’=K1, whereas the two other bonds hakg: =K.

in accordance with the value @ on the bond(jk).

If phase dynamics in a Josephson junction array can b
assumed to be nondissipative and the capacitance matrix
the array has only diagonal elements, the linearized equ
tions of motion for the variables; and v, following from

Eg. (12) can be written as B. Comparison of different ground states
(2J5- |\/|6w2)uj = > Jikvis (143 In the statge) all sixfold coordinated sites have the iden-
k=k(j) tical environment in terms of the coupling constajfsAs a
consequence, the values of the coupling constéptsn this
(Js- Mgodv = D Jiu, (14b) state depend only on the orientation of the bofigs). For
i=j(k) e two of the three possible orientations of the bonds they are

_ _ 2 . . equal to each other, see Figa If all sixfold coordinated
whereJs=J; +J,+J5, M; = (/2€)°C; (wherei=3,6), andj(k)  gjtes | are renumbered by pairs of integers with the same

denotes the nearest neighbors Iofl_n Egs. (14) we have parity (n,m) as shown in Fig. 5, Eq15) in this state can be
performed the Fourrier transformation to the frequency repsaritten as

resentation and have assumed that the self-capacitances o
the superconducting islandS; and Cg, are different for the [2Ks= A(@)Tunm= K Une1 et + KS™Un 1 e
two types of islands.

Note that in all ground states discussed in Sec. Il C the
coupling constantd; always have the same three val(és + Ko[Un+om+ Un-2ml, (19
J,, andJ;) on the three bond§ k) connected to any sitl,
as a consequence of which the coefficient standing in th
left-hand side of Eq(14b) does not depend da This allows K<1m> =Ky, K(2m> =K,, (20)
one to conclude that all eigenmodes wit=0 should have
the same eigenfrequenay,=(Js/Ms)2 In the thermody- for all V"?LL)‘GS_ ofm. _
namic limit the degeneracy of this eigenfrequency is equal to FOr Ky given by Eq.(20), Eq. (19) can be easily solved
one-third of the total number of modes. after performing the Fourrier transformation. Substitution of

The spectrum of the brunch with # 0 can be found from

into 4. (149 and can be wrten s \VAAAAL MAAAN
) AVAVAVAVANIAVAVAVAVA

Awny= 2 Kijlty =up) 9 VAVAVAVAVARVAVAVAVAY,
AVAVAVAVANIVAVAVAVAVA

(m-1) (m-1)
+Ky Uneame1 KT Uiy mer

&vhere Ks=K;+2K, and

where
(@) (b)
M3M
Aw) = (2M3 + Mg)w? - j 8 w4, (16)
S
j’(j) are the six nearest neighbors jofn 7 and
K“I = (ijrirkr + ij/rirkrr)/Js, (17)
k’” andk” being the two threefold coordinated sites belonging )

to the same rhombic plaquette pand|’.

The right-hand side of Eq15) has exactly the same form  FIG. 4. The distribution of coupling constarks;. between the
as the equation describing harmonic fluctuations on a trianbonds of7 in different states(a) statesa ande; (b) a single type |
gular lattice with the nearest-neighbor interaction characterdomain wall; and(c) statesc and g. Thin lines correspond to
ized by the coupling constanks;, defined by Eq(17). Quite  Kj;;=K; and thick lines toKj;, =K5.
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u, m>expi(gn+pm) into Eq. (19) gives the dispersion rela- rier transformation with respect to the variablekeeping the
tion in the form variablem as it is. In the terms of the variablg,(q) defined
in such a way, Eq(19) can be rewritten as

[2Ks— A (@) Jup(@) = K™(Q) U 1(a) + 2K, cOS29)Un(Q)
+K™D(g)um-1(0), (22

Aw) = 2Kg= 2K, cogq + p) — 2Ky[cogq - p) + cos 3]
(21)

Note that Eq(21) is of the second order im?, which corre-

sponds to the existence of the two momentum-dependent

eigenfrequenciesy;(q,p) andw,(q, p), for each point in the K™ (q) = Ko(aexdia(q)sm].

Brillouin zone in addition tawy=(Js/ M3)*? discussed above.
According to Eq.(11), each zero-energy domain wall of

the type Il leads to the permutation of the coupling constant

J; andJs in the Hamiltonian of harmonic fluctuations. Such Ko(q) = Ky expliq) + K, exp(—iq)|

a permutation does not change the faclgr Mzw? in the

right-hand side of Eq(14b), and therefore does not change and

neither the degeneracy, nor the frequengy, of the family _ : .

of the eigenmodes with=0. Since Eqs(18) are also invari- a(q) = ard K, expliq) + Kz exp(~iq)]

ant with respect to the permutation df and J;, such a are independent ah.

The dependence oK™(q) on m enters only through
én:(—l)dm:il, whereas both

permutation introduces no changes to the form of (B6) as With the help of the simple gauge transformation
well. This means that the whole set of the eigenfrequencies

of the harmonic fluctuations in the system does not feel the un(q) = exp[ia(q) > sm} ur(a), (23
presence of the type Il domain walls and is exactly the same m’'<m

in all the states which can be obtained from each other by th\?vhich cannot not change the eigenvalues, B can be
insertion of the type Il domain walls. For example, the dis- 9 9 '

persion relatior{21) is valid not only in the statée), but also transformed to the form
in the state(a), which is characterized by exactly the same  [2k. - A@)Tu() = Ko(@)Ul,1(0) + 2K, cog2g)u/-(q)
pattern of the coupling constarks;, shown in Fig. 4a). )

The zero-energy domain walls of the type | lead to a more + Ko(a)upm-1(9), (24)
complex permutation of coupling constants. However, in th

8n which all coefficients do not depend on This propert
terms of the coupling constanks;, the consequences of this P property

. . of Eq. (24) proves that for the considered boundary condi-
permutation are rather S|mple.and r_educe to the permutatlotriwons the whole set of eigenfrequencies is insensitive to the
of K; andK, for those two orientations of the bondg’) presence of domain walls of the type |. Since E2f) has

that are not parallel to the direction of the yv%ﬂlsee Fig. been derived from Eq(19), the form of which does not
4(b). This means that Eq$20) should be valid only when gepend on the presence of the zero-energy domain walls of

dy, the number of the type | domain walls situated atyhe type II, the same conclusion is applicable also in the

m’<m, is even and should be replaced by presence of an intersecting network of zero-energy domain
) — ) _ walls of both types.

Ki' =Ky K37 =Ky Note that this does not mean that the spectrum of fluctua-

) tions in an infinite system, understood as the dependence of

whendy, is odd. the eigenfrequencies on the two-dimensional wave vector, is

In the presence of periodic boundary conditions in thee same for all periodic ground states. On the contrary, it
horizontal direction and open boundary conditions in the pershoy|d have different forms in the states whose transforma-
pendicular(vertica) direction the irrelevance of such permu- tion into each other requires the insertion of a periodic se-
tations of coupling constants for the set of eigenfrequencieauence of the type | domain walls. In particular, the disper-
can be easily demonstrated in the framework of the mixeq;jon relation in the statéc) and state(g) [which can be
representation which is obtained after performing the Fourypizined from each other by the insertion of the dense se-

quence of type Il domain walls and both are characterized by

m the distribution of the coupling constars;, shown in Fig.

14 4(c)] can be obtained by substitution of,(q) <expipm)
into Eq. (24) and is of the form

3 A(w) = 2Ks— 2K(q)cosp — 2K, cos 2j. (25)

9] Apparently, it does not coincide with the dispersion relation

in the statega and (e) given by Eq.(21). Note that the
9 2 4 & 7 n elementary cell of the statéc) consists of 12 sites, and,
therefore, a more straightforward approach to the derivation
FIG. 5. The numbering of the sixfold coordinated sites by pairsof its dispersion relation would give it in the form of the
of integers(n,m) with the same parity. determinant of a 12 by 12 matrix.
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However, the free energy of harmonic fluctuatioRs, correlation function of the variableg in a given state will
which in a general situatiofthat is, when the quantum ef- be determined entirely by the symmetry of the configuration

fects are also taken into accouctn be written as of Kj;» in this state. In particular, in the situation when the
5 value of Kj;; depends only on the orientation of the bond
F,=T), In<2 sinh—w) (26)  (jj’) and can be equal only #; or K, the correlation func-
T :
{w} tion

is determined entirely by the set of the eigenfrequencies of
the system{w}. Thus our results demonstrate that for the

considered boundary conditions the valud-gis exactly the wherej and]’ are the nearest neighbors of each otheffpn

same for all the ground states discussed above even in th . .

- .should also be dependent only on the orientation of the bond
case of a finite system. For other types of boundary condi.., . . .
. . , (jj") and acquire one of the two possible values, which be-
tions the same property will be recovered in the thermody-
namic limit low are denoteds; and G,. The same property can be de-

Naturally, these conclusions should remain valid both inschm?[ﬁd Ey saying tlh?th sutcthtatéﬁ/ depends only on
the zero-temperature limit, when E@6) is transformed into  WNEtNErs;j 1S equal toig, orto Ky,
the expression for the energy of zero-point fluctuations, {
i’ =

ij r= <(Uj - Uj')2>. (27)

Gl for K”r = Klv (28)
h dqdp L=
E,=7 f f (2maLeo T @i@p) * wx(ap)] G, for K =K,.
) o ) The type Il domain walls are simply of no consequence
and in the classical limitz — 0), when the dynamical prop- for the values oK;;, and, therefore, for the correlation func-
erties of the system are of no importance, and ) is  tions of the variables. On the other hand, it is rather evident

reduced to that the gauge transformatid@3) leaves invariant the form
of the correlation functions of the variabl with the
. :I” dqdpln[Mq,p)] o
272 (2m)? T I

same value ofn. This means that the correlation function
((uj=u;)? cannot be sensitive to the presence of the type |
whereA(q, p) denotes the function af andp standing in the ~domain walls which do not pass between the pojrasd]’.
right-hand side of the corresponding dispersion relation, EqoINce the siteg andj’, which are the nearest neighbors of
(212) or Eq. (25). each other o7, are too c!ose to haye a domaln wall passing
Another system, in which the accidental degeneracy of itPetween them, Eq28) will be applicable also in the pres-
ground states remains unbroken when the free energy of tH1c€ Of an arbitrary set of zero-energy domain walls.
harmonic fluctuations is taken into account, is the fully frus-
trated XY model with a honeycomb lattidé. The method IV. ANHARMONIC FLUCTUATIONS
used in this sectiorithe construction of the gauge transfor-
mation which reduces the linearized equations of motion for In this section and below our analysis is restricted to the
fluctuations in different ground states to the same ﬁqnm_ classical version of the model. It is well known that in a
sents a generalization of the approach of Ref. 16, where th@lassical system the leading contribution to the free energy
analogous gauge transformation has been constructed for tf@lated to anharmonic fluctuation8,,,=F3+F,, is the sum
harmonic part of the Hamiltonian. of the two terms,
The analysis of this section can be generalized for the

case when the capacitance matrix of a Josephson junction = :—i([H“)]Z) (29)
array in addition to the self-capacitances of superconducting 3 2T
islands also takes into accou@t, the capacitances of Jo-
sephson junctions forming the array. This will lead to theand
replacement
Fa=(H?), (30

J,— Jy(w) = J,— My?,

whereM,=(#/2€)2C,, in all dispersion relations, but will not whereH® andH are, respectively, the third- and the forth-
bring any changes in the qualitative conclusions. It is equallyrder contributions to the expansion of the Hamiltonian in
possible to include into consideration an ohmic dissipation ofhe vicinity of a particular ground state, and angular brackets

each junction described by a frequency-dependent harmonfenote the averages over thermodynamic fluctuations calcu-
contribution to its Euclidean action. lated with the help of the harmonic Hamiltonian.

In the considered probletd® andH® can be written as

C. Correlation functions 1
_ , _ , HO=>HY;, HY=-=2 J(u-v)°
Since the evolution of the variablescan be described by k 65w
Egs. (15), which contain only coupling constanks;., but

not the original coupling constand,, the symmetry of the and
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Ho S He H(k4 _ E ij(u] ot the form of a second-order polynomi&y(G; ;. G;.;..Gj,;.). .
- ’ ' Whos_e three arguments are the nearest- nelghbor correlation
functions defined by Eq(27). Instead of looking for the
where coupling constanty, are exactly the same as in the explicit form of P, it is sufficient to notice that since the
harmonic Hamiltonian, Eq12), whereas coupling constants central vortex of a triad is always surrounded by the bonds
J’ =Jsingy acquire one of the six possible values with Jy equal toJ; or Jz, we will always haveK =K1 and
k—+J sin ¢, in accordance with the value ofy on the K; 4, =K, =Ka, and, as a consequence of IEZﬁ) the result
bond (jk). Due to the current conservation condition cou- of the averaging oH® will have the same form,
pling constants]lk have to satisfy the constraints, @ _
, , <Hk >_ Pz(Gz,Gz,Gl),

j:%k) =0, k:%j)ij—O, (31) for all k independently of what particular ground state is
considered. Therefore the value léj:Ek<Hf(4)> will be ex-
actly the same for all the ground states which we are trying
A. Invariance of F, to compare already at the level of the separate terms in this

on all sites of the lattice.

In the case of a dice lattice there exists a convenient Wa§um
to separate the fluctuations on the two types of sites from B. Simplification of F3
each other, which allows one to considerably simplify the
calculation of the averages in Eq29) and (30). It consists
of the replacement of variables

The result of the averaging cHIff) with respect to fluc-
tuations ofw, can be in an analogous way reduced to the
sum of two terms, the first of which,

=Wt v, U{(‘)):.Z JiUilJs, (32 R
j=i(k) Pl(ull ulz ulg E JJ J »
which transforms the harmonic Hamiltoni@h2) into

is a first-order and the second,
H®@ = 2 Kijr (U = uj)2+ = EJS 2, (33) .

2) 1$ 5 ~
: Pa(U Uiy t) =~ 3 37,
where the coupling constanis;, are, naturally, the same as
have been obtained in Sec. Il B, see E{¥) and(18), after
the exclusion of the variablas, from the equations of mo-
tion.
A simple form of Eq.(33), in which each variabley, is

a third-order polynomial of the variableea, which are as-
sumed here to be numbered in the same way as (3.
Both P, and P; depend onk only through the factor

decoupled from all other variables, makes the calculation og +1, which, for example, can be chosen to be determined
averages with respect to the fluctuations wf a very y the sign Ole

straightforward procedure Substitution of E§2) into the The sum ofPy(u; ,u;,,u;) overk can be reordered as a
expression forH ) with subsequent expansion of the result SUm overj,

in powers ofw aIIows one to express the result of such an

. : \ (w)
averaging 0fH<k4) as a fourth-order polynomial of the vari- > Pl(ujlaujzauj3)|k: - 52 Gy,
ablesu;, k S
where
Py(u ,u ,u; J3W22+6W2u +u
k=k(j)
(34) v
o , 5 L and |’ and |” are the other two nearest neighborskofn
where(w?)=T/Jsis the value ofwy*, which is the same for  5qition toj. It is not hard to notice that all coefficien6
all k, whereas are equal to zero as a consequence of (5.
5 o This allows one to express the result of the averaging of
U, =u ~v=— E Jp(uj, — ;). [H®7? over fluctuations of the variableg, as
Sb#a
. . . 372y = R2 U U
All terms which are odd inv, have disappeared from Eq. (H¥P)w =R+ % PG(UJl'uJZ'uJS) (39

(34) due to the corresponding symmetry of the Hamiltonian
(33). Note that the form oP,(u;,u,,us) does not depend on where
k. To achieve that we have renumbered in BBf)) the three
sitesj which are the nearest neighborslofs j,=j.(K) in R=2 Pa(uj,, uj, Uj,) (36)
such a way thaﬂjak=Ja. K

Since Hamiltonian(33) does not include linear terms, the andPg is a sixth-order polynomial of its arguments, the form
result of the Gaussian averaging I@j(ujl,ujz,ujs) will have  of which is the same for ak. Exactly like it happens with
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P,, the averaging oPG(ujl,ujz,ujs) over fluctuations ofy; Substitution of Eqs(13) and(41) into Eq.(40) allows one
produces the same expression forkdlhdependently of what to reduce it to
particular ground state is considered. That means that any

+ — _ 2 _ ’ _ 3
difference between the values &%, in different ground P3(Uy, Uz, Ug) = Kg(Uz = Ua)"(U3 = Up) + KUy = Up)

states can result only from the first term in E85), + Kj(ug — uy)?, (42
1
F.nn= const _E<R2>' (37) where
J , o J " 1 1
Kes=—%=, Ky=—%=, Kzg=|——F¢- = |J.
616 9y 9v3 36V6

C. Explicit expressions

Let us start with comparing the free energies of anharHowever, in all the ground states that we consider the last
monic fluctuations in the statég) and (e). Instead of calcu- term from Eq.(42) after substitution ofP;=7P; into Eg.
lating F,., Separately for both these states it is more(36) cancels with the analogous term from the neighboring
convenient to construct an explicit expression directly fortriangular plaguette, which allows one to #=0.

ea—pe —Fa . the difference inF,,, between the states Each time a type Il domain wall is crossed the replace-
(e) and (a). Since both these states are characterized by th@ent of variables); described by Eqg11) has to take place.
same form of the effective Hamiltonian for the variablgs In terms of the expression fdr this procedure is translated

the construction of such an expression does not require tHgto the replacement of each term of the foRj(uy, up, Us)

application of the gauge transformation given by [E2p).

The same is true also for the whole set of states which can be

constructed from the state) or state(e) by the insertion of
some sequence of type Il domain walls.
If the state(e) shown in Fig. 8e) is rotated byr/3 in such

by
P3(ug,Up,Ug) = - PE(U3,u2,u1).

As a consequence, the value Rffor the state which is ob-

tained after the insertion of the dense sequence of type Il

a way that the orientation of the possible type Il domaindomain walls[the structure of this state is obtained after

walls becomes horizontal, the expression RrEq. (36), in
this state can be rewritten as

rotating Fig. 3a) by /3] will have the form

RE=D) oS, (43)

Substitution of Eqs(38) and(43) into Eq.(37) allows one

al

Re=2 oS, (39)
m
where we have again used the numbering of sites defined kip expresssFS3 as
Fig. 5, om=(-1)",
S;: 2 [Pg(un+2,mv Un+1,m+1yun,m)
n=m(mod 2

+ P5(Uns 1 me 1 Unmo Un-1 e ) 1 (39

and P;=rP is an invariant version oPs,

3

+ 1 ) 3

P3(ul1u21u3) == _32 ‘Ja|: E Jb(ua_ UD):| ’ (40)
6‘JSa=1 b#a

the form of which does not depend &ninstead of introduc-

ing a definition simply forS,, we have used E¢39) to

define a more general objesf, where superscript can be

equal to +1 or 0. However, for the compactness of notation
we will usually replacew=+1 simply by plus or minus. In
Eq. (40) the constantslj, are expressed in terms of three

constants,
1 1
J;=Jsinf,=| =-—=1J, 41
! ! (\'3 \"6) (413
! H 2
J;=Jsin6,=—=J, (41b)
V6
, _ 1 1
Jy=-Jsinf;=—( =+-%=J, (410
V3 6

whose sum is equal to zero in accordance with Eg§%).

SFEA =N, V(2 - 1), (44)
=1
whereV(m) is the average
2
V(m) = T_LX<$"1S;‘2>’ (45)

which depends only om=m;—m,, L, is the size of the
system in the horizontal directidin lattice unites of7) and
S, is given by Eq.(39) with

1 _
Pg(ul,uzyua) = E[Pg(ul,uzyus) = P3(ug,up,u3)]

1
= E[PE(Ul,Uzyus) + Pg(u3,u2,u1)]

being the symmetri¢with respect to the permutation of
and ug) part of P3(ug,uy,Us). The explicit expression for
P9(uy, Uy, us) which follows from Eq.(42) is

K
P3(U, Uz, Ug) = (U = Up) (U3 = 2Up + Uy)

!

+ ;?’[(u1 —upP+ (Uuz-wp)’l. (46

Analogous comparison of the valueskf,,in two differ-

ent states allows one to find that the free energy of a single
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type Il domain wall on the background of the stdg is 1
given by EJdXLﬁuy’
_ . where, howeveniZ should be calculated at the valuesyof
Fow= Lme:l mv(m), (47) which differ from each other by onén this section sub-

. _ _ . scriptsx andy designate partial derivatives with respect to
whereas the interaction of two domain walls situated athe corresponding variablesThis means that in the frame-

m=m, andm=m, can be written as work of the continuous approximation the total expression
» for S, should be replaced by
Find(My =my) = = 2L, > mV[my—my +m).  (48) - , - ,
m=1 (Scont=V2K3 | dx(uf),u, = - \'2K3f dxuug. (51)

When writing Eq.(51) we have performed the integration by
parts and also the rescaling—Ax (\2=1+2K;/K,=2),

When Eq.(46) is substituted in the expression f&,  \hich transforms the continuous version,
given by Eq.(39) with =0, all terms proportional td;

D. Continuous approximation

cancel each other after the summation oveso it becomes @ _1 2 2
. . . . = - + +
possible to rewrite this expression as Hoont 2 dxdy[(2Ky + K)u, + Koy ],
3}1: 4K, E (VnU)Z(V;rUNm':nm of the harmonic Hamiltonian,
n=m’(mod 2 Ky
- H?= > 2| = (Upzm— Unm?
- E (Vnu)z(vmfu)|m’:m ) (49) n=m(mod 2 m 2 rrem "
n=m’(mod 2 K
2
where + ?I_El (Uns1me = un,m)2‘| :
Vou= Un+2m 7 tn,m to the isotropic form,
: 2
) ) . . . ) @ _ Kett 2,2
is a lattice analog of the derivative in the horizontal direction Hison =~ dxdyfus +ug], (52
and
where
+ Un oy + Unso
Vm'u =t f “Unrim =1

| 2 3/2
Keﬁ:\(2K1+KZ)K2:<§) J.

are two lattice analogs of the derivative in the vertical direc- o . _
tion suitable for a triangular lattice. It follows from symme-  Substitution of the correlation function,
try reasons that

. G(x,y) = const — N +y?)2,

(V) (VEW) =O. (50 ) 2k " Y
The function$ defined by Eq(49) is a third-order poly- corresponding to the Hamiltonigs2) into

nomial of variablesu, ., belonging to the stripe with L

m’=m, m+1. Accordingly, the result of the Gaussian averag- \ 1)°°“‘(§1z)°°“'>

ing of the produc%ﬁ%2 will be a third-order polynomial of e e

the two-point correlation functions. It is not hard to check = 2K3 f dx f X 2GxGry + 4G5 Gyyl,

that the only terms which survive in the expression for — -

<5ﬂ115ﬁ12> are the triple products of the two-point correlation [where all derivatives of3(x,y) should be taken ax=x;

functions whose arguments belong to different stripes-x,, y=y,-y,] and subsequent integration ovgrx, give
whereas all other terms cancel each other in the result of the

: : T 1
summation oven or as a consequence of E§D). Spgaklng Veor(M) = yo = ————, (53)
more precisely, due to the structure of the expressiorgfor J |my - my|
Eq. (49), they are the triple products of the lattice analogs of

L . ; . where
the derivatives of such correlation functions, which for _
|m,—my|>1 can be rather accurately calculated in the frame- = 2KZ 157 453
work of the continuous approximation. Ye= 2\"2(277K D 4 10242 0.0077.

€

When integer variables and m are replaced by continu-
ous variables andy, both the first and the second term in  Thus we have found that the quantkym), the summa-
the square brackets in E¢49) should be replaced by the tion of which overm allows one to find different essential
same integral free energies, contains a very small numerical coefficignt
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and very rapidly decays with the increasenafAccordingly, leads to the replacement ¢f by y,~0.0032>0. The con-
the expressions in Eq&4) and(47) which include the sum- tributions from more distant pairs of plaguettes are much
mation of V(m) starting fromm=1 will be determined en- smaller and can be safely neglected. This result confirms the
tirely by the first term in the sum. However, substitution of positiveness o¥(1). According to Eq.(44), the positiveness
Eqg. (53) into Eq. (48) with subsequent replacement of the of V(m) for all m ensures thaE$ > F3.,

summation by integration allows one to find the form of the It follows from Eq. (47) that the value of the type II
interaction of two domain walls fom>1, domain wall free energy per unit length can be then rather
K T2 L accurately estimated as

/c

2
1 T
5.9 m o =72 7 (55

Fim(m) =

In the analysis of the next sectidﬁ’\),v(T) plays the role of
the fluctuation-induced effective energy of a domain wall.
Note that the expression for(m), Eq. (53), which we The comparison of the free energies of anharmonic fluc-
have found in the framework of the continuous approxima-uations in the state&@) and(c) can be made following the
tion is positive and increases with decreasempfthat is  same approach, but turns out to be much more cumbersome
when one moves out of the region of the applicability of thefor two reasons. First, in order to reduce the Hamiltonians of
continuous approximation. Although it hardly can be ex-the harmonic fluctuations in these two states to the same
pected that the more accurate calculation will lead to thédorm one has to apply the gauge transformation introduced in
change of the sign o¥(m), we have checked this fan=1  Sec. Ill B. Second, there is no complete cancellation of the
by going beyond the limits of the continuous approximation.second term from Eq(42), which leads to the strong in-
The exact expression fov(m) given by Eqgs.(45) and crease of the number of terms one has to take into account in
(49) can be written as a sum over all possible pairs of tri-the expressions for the free energies of fluctuations. A nu-
angles belonging to two different stripes. For 1 the first ~ merical calculation shows that the free energy of anharmonic
term in this sum, that is the contribution which corresponddluctuations is lower for the stat@), which means that the

E. Numerical calculations

to the pair of adjacent triangles, has the form free energy of the type | domain wall shown in FigbBis
2 also positive.
V(1) = ﬁ((u o= Un DXV (- Vou)).  (54) The numerical constang; characterizing this free energy
n+2,m n, m m "

is equal to 0.0044 if one takes into account only the contri-
butions from the adjacent plaquettes, whereas when the con-
tributions from the pairs of plaguettes which have a common
site are also included, one gets the value which is very close

The averages which enter E®4) are given by the integrals
over Brillouin zone,

7 (7 dqdpWy(q,p)T 0 72
= o = j [
<( n+2,m n,m) > I (277)2 Ao(q,p) Yy =~ 0.0033.
7 dgdpWa(a,p)T
(Vo) (= V) = v
o Ja(2m)* Ag(q,p) V. DISORDERING OF VORTEX PATTERN
where A. An estimate for the phase transition temperature
_ B The temperature of the phase transition associated with
Wa(q.p) = 2(1 - cos 2, the proliferation of domain walls and the disordering of the
_ periodic vortex pattern can be estimated by analyzing a more
W,(q,p) = (cosq - cosp)? - sir? p, complete expression for the domain wall free energy,
which in addition to the term induced by anharmonicities,
Ao(9,p) = 2K4(1 - cos 2)) + 4K,(1 - cosq cosp). £ (T)=~T2/3, should also include the entropic term related

to the formation of kinks,
wa(T) = f (T) - VT EXIi EK/T)

whereEy «J is the energy of a kink and~ 1 is the density
(per unit length of the positions on a domain wall where a

Numerical calculation of these integrals gives

T
((Unszm= Unm?) = 0.433K—,
2

T kink can exist. In the case of the exactly solvable anisotropic
(Vau) (= Viqu)) = 0'0294K_’ Ising mode?® an analogous estimate allows one to find the
2 transition temperature with the exponential accuracy.
which after substitution into Eq54) allows one to find that The temperature of the phase transition associated with
Vo(1)=y,T?/J, wherey,~0.0018. the spontaneous creation of infinite domain wallg,can be

The addition to Eq(54) of the analogous terms related to then estimated from the conditidig,y(T,) =0, which can be
the pairs of triangular plaquettes which have a common siteewritten as
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Ex defect is the same as the one of the Kis&e Fig. )], E is
Te= T/ T] (56)  very close toE.
Dwh te The probability of formation of stripe defectBgp(L), is,
Equation(56) shows thafl, is determined mainly b¥, and  naturally, determined by their free energies,
only logarithmically depends off%), that is ony.
Figure Ga) shows the structure of an elementary kink on Psp(L) = exd - Fsp(L)/T],

a type | domain wall separating two different versions of thewhich allows one to estimate the fraction of the total area
state(a). This is one of the simplest neutral pointlike excita- of the system covered by such defects, as
tions possible in the system. It contains only two vortex clus- 5
ters of anomalous sizes, one with four positive vortiGas (T) ~ T p(— 250) (59)
stead of threpand another with two, so there is no excess P fOLT) T/

vorticity associated with this defect. Note that any defect ) L
with only one vortex cluster of anomalous size will be char-BY 100king whenp(T) becomes of the order of 1, a criterium

acterized by a nonzero vorticity, so its energy will be loga-iS obtained which differs from Eq56) only by the replace-

rithmically divergent. ment Ex — E,. SinceEy=~Ey, this gives an additional sup-
The distance between two neighboring positions the kinkOrt for our estimate of the phase transition temperature.

7). However, the same domain wall allows also for the for-estimate we have constructed is an estimate from below.
mation of kinks of the opposite sigforientation, which S_ince strip_e def_ects are strongly anisotropic_and can have
means that the value ofin Eq. (56) should be set equal to different orientations, they have to start crossing each other
one.

Numerical calculation of the kink energy has been per- ()
formed by minimizing the energy of a finite lattice cluster
around the kinkwith the size 4 X 4L, containingN=48L?
—10L+1 sites inside jtwith the assumption that on all sites
outside of this area the values of the phases are exactly th
same as they would be if the kink was infinitely far. Numeri-
cal calculation ofEx for L=1,2,3 (L=3 corresponds to
N=403 and extrapolation of the result to— « give

|
b
(
X
%
»
i

3
e
e

W,
&y

E
TK =0.1037 +0.0001. (57)

The simplest kink on a type Il domain wall is also neutral, (
but has a more complex structure. It contains four vortex
clusters of anomalous sizes, and, therefore, its energy is
roughly speaking, two times larger then the energy of a kink
on a type | domain wall. This means that in the vicinity of
the phase transition type | domain walls play a relatively
more important role. Numerical solution of E@56) for
Ex/J=0.1037 andy=0.0033 gives

T/J~ 0.010. (58)

B. Vortex pattern fluctuations in the low temperature
phase

At T<T, all domain walls excited as thermal fluctuations
should have the form of closed loops. At temperatures well
below T, the form of these loops will be strongly anisotropic.
At T<T, a typical defect will be formed by two parallel
zero-energy domain walls separated by the minimal possible
distance?? Accordingly, the free energy of such a stripe de-
fect can be written as

Fso(L,T) = 2o+ 2f0 (T)L,
) sP ) 0 pw . ] FIG. 6. Pointlike defects with finite energie&@) a kink on a
whereE, is the energy which can be associated with each ofype | domain wall,(b) an end point of a striped defect with the
the two ends of stripe defect amhdis its length. Since in the minimal width, and(c) an intersection of a striped defect with a

considered problem the structure of the end point of a stripe@/pe | domain wall.
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while p is still much smaller than 1. An estimate shows thatthe isotropic Ising modgla twofold or a threefold decrease
the average distance between the centers of stripe defeat$temperature with respect T, is usually sufficient to ob-
becomes comparable with their average length whetainr;.~ 1, which allows one to observe the ordering even in
Tz%Tc. Since each of such crossings costs an additionalelatively small systems. However, in situations when a finite
energy, this will decrease the rate at whja(T) grows with  free energy of domain walls arises only from the anharmonic
increasing temperatuf@s well as the rate at whichy,(T) fluctuations,r(T) diverges not only whed — T, but also
decreasds whenT— 0,2¢ and, therefore, the best conditions for the ob-
The defect which is formed when a stripe defect crosses &ervation of vortex-pattern ordering in a finite system are
type | domain wall with different orientation is shown in Fig. achieved at intermediate temperatures. The differentiation of
6(c). Like the two other types of local defects consideredfpw(T)/T with respect tol shows that the minimum af(T)
above this defect is neutral and consists of two clusters oflefined by Eq(60) is achieved when
anomalous size§our and twg, which suggests that its en- £
ergy is also close t&g. Since no additional energy scale is T=—x_
involved, one can hope that the effects related with such In[vE/fow(T)]

crossings will lead only to the appearance of some numerica+he numerical solution of Eq61) for the same values @&
factor (comparable with Lin the right-hand side of E456). and y, and substitution of thct‘a result into EGO), show th:lt
Note that one also cannot exclude a possibility that th(—ia_l‘ ' ’

(61)

. : ) ' e minimal value of . is achieved wheid = 0.8T; and is of
disordering of the vortex pattern is a multlstqge Process anfhq rger of 2< 10%. Thus the observation of vortex-pattern
takgs place as a sequence of phase transition, th_e f|r_st 8 dering requires the linear size of the system to be at least
which, atT.~0.01], is related to the appearance of infinite comparable with 19
domain walls with only one orientation.

At T—0 th | £ ai by Eq.(59) tall Note that the finite-size effects discussed in this section
tend t_) € Vﬁ.uﬁ Olp glvetr;] ty .t?]' h pronen a fyt are related to the destruction of a genuine long-range order
ends to zero, which means that wi € decrease ot ey therefore, have nothing to do with much more subtle

perature the system becomes_more and more ordered. Qu"ﬂtrinsic finite-size effects” in a finite system with irrational
remarkably, this is accompanied by the divergence of thqrustration discussed in Ref. 44

correlation radius of fluctuations,

_ T
2fpw(T)’

re(T) (60) VI. DESTRUCTION OF PHASE COHERENCE

o . Up to now we have discussed only one phase transition
mzlclgvéstgﬁwtségtﬁg ﬁ%i:h(?r)ao\!ir/?_ge length of the defect. Inrelated to the disordering of the vortex pattern and the pro-
¢ .

liferation of domain walls. However, the ground states of
S uniformly frustratedXY models are characterized by a com-
C. Finite-size effects bination of discrete and continuous degeneracies, which pro-

Thus we have found thak,, the temperature of vortex- vides possibilities for the existence @it least two different
pattern ordering in the fully frustratedY model on a dice phase t.ran.smon%.The se_cpnd phase transition is .related to
lattice, can be expected to be of the order of 0.0has to ~ the vanishing of the helicity modulug;(T), describing the
be emphasized that &t< T, the fluctuation-induced free en- Tigidity of the system with respect to a phase twist. In terms
ergy of domain walls is extremely Wealtg)\avslcr“y.], of a Josephson junction array this phase transition corre-

wherey<0.01 is an additional small parameter calculated inSPONdS to the destruction of superconductivity. It takes place
Sec. IVE. not necessarily at the same temperature as the vortex-pattern

The very low value of the raticbg’\;v/T atT=T, leads to disordering.

the unusual prominence of the finite-size effects consisting of The interaction between the discrete and continuous de-

the spontaneous formation of domain walls crossing th@€€S of freedom in uniformly frustratedy models has a

whole system. If a sample has a form of a stripe with a fimtenonperturbative nature and is related to the formation of frac-

width, L, the probability(per unit length to have a domain tlonal7_;/ort|ces ~at corners and intersections of dpmam
wall crossing the whole system can be estimated as walls. Accord_lng to the ge_nergl sch_eme_ proposed in R_’ef.
9, three scenarios are possible in a situation when the disor-
fow(T) L dering of a vortex pattern takes place as a single phase tran-
p(L) ~ exp[— —L] = exp[— or (T)} sition (whose temperature we dencfe) and not as a se-
¢ quence of phase transitiofs.
Vortex-pattern ordering, or, at least, any traces of such an First, the vanishing of the helicity modulus can take place
ordering can be expected to be observable only when thgt T<T,, if T, the temperature of pair dissociation for or-
average distance between such wall§,)=1/p(L) [for  dinary (integey vortices, is lower tharT,. The phase transi-
L=r(T) this quantity plays the role of the effective correla- tion at T=T,, in that case has exactly the same nature as the
tion radius induced by the finite-size effekts much larger  Berezinskii-Kosterlitz-Thouless transitithin the conven-
then 1, which requires one to hate>r(T). tional XY model (without frustration. Numerical
In typical systems with discrete degrees of freedom anasimulations>!! as well as analysis of the mutual influence
lyzed in statistical mechanicghe simplest example being between vortices and kinks on domain waflsjemonstrate
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that this scenario is realized in the fully frustratéd models  in the opposite direction. This means that the cluster consist-

on square and triangular lattices. ing of two positive vortices behaves itself as a fractional
The vanishing of the helicity modulus can also take placevortex whose topological charge is equal to -1/8. _
atT>T,, but only if at T=T, the logarithmical interaction of One also can construct an analogous intersection where

fractional vortices is strong enough to keep them bound irPne of the clusters is formed by four positive vortices instead
pairs. Note that aT < T, the confinement of fractional vor- Of three. The topological charge of such a defect will be
tices is ensured by their linear interaction related to a finiteequal to +1/8. It is clear that when the cluster of an anoma-
free energy(per unit length of the domain walls which are lous size consists of negative vorticgsstead of positive
connecting them. In such a case the loss of phase coherend sign of the topological charge is reversed. The topologi-
is related to the dissociation of pairs of logarithmically inter- cal charges of more complex intersectideentaining, for
acting fractional vortices and can be expected to take place &ample, the clusters of five or more vortices or several clus-
T=Tg,>T,, WhereTp, is the solution of the equation, ters of anomalous sizesvill all be multiples of 1/8. Note
that the excess vorticity which can be associated with a vor-
tex cluster depends not only on its size but also on the shape.
For example, when a cluster consists of three vortices, but
has the shape of a hexagon, the topological charge which has
andQ<1 is the topological charge of the elementary frac-to be associated with it is equal to +3/8.
tional vortex. Equatior{62) is nothing else but the generali- The only possibility to have domain walls crossings in an
zation of the Nelson-Kosterlitz universal relatf8rior frac-  equilibrium infinite system well below the temperature of
tional vortices® This scenario is realized in the vortex-pattern ordering is related to crossing of stripe defects
antiferromagnetiY model on skagomdattice, whereT,is  discussed in Sec. V B. Figurdd shows an example of the
expected to be anomalously smdll/J~ 10436 and also in  intersection of a stripe defect with a domain wall where the
the uniformly frustratedXY model with f=1/3 on adice  two fractional vortices have the opposite topological charges,
lattice, in which the vortex pattern is disordered at any finitewhich makes the energy of such an object finite. Although it
temperature and becomes quasiordered only=Q.* is possible also to construct an example in which the topo-
The two transitions can be expected to coincide if atlogical charges of the two intersections will be the same, the
T=T,. the value ofl'(T) is sufficiently large to ensure that total topological charge of any finite size defgfbr ex-
integer vortices are bound in pairs, but is not large enough t@mple, formed by several intersecting stripe defebtss to
prevent from dissociation the pairs of fractional vortices. Inbe an integef.° Therefore at low temperatures the fractional
such a casd’(T) jumps to zero exactly aT=T,, the ratio  Vvortices can be present only in the form of bound pairs,
T/T(T) at the transition point is not univer8a(/2)Q? whose size is _restricteo_l more by the available separations
<T/T(T)< /2], and the transition is likely to be of the first between domain walls in stripe defects rather then by the
order342 The results of numerical simulations suggest that®9arithmic interaction of these objectahich is 64 times

this scenario is quite possibly realized on square lattice af¢@ker than the interaction of ordinary vortiges _
f=2/543 as well as af=1/8 andf=1/10%2 With increase of temperature the average separation be-

In the case of the fully frustratedlY model on a dice tween the domain walls forming a stripe defect increases,
lattice the effective value of the helicity modulgsroperly which allows larger separations between the fractional vorti-
averaged over anglest T=0 is I'y=(2/3)¥21~0.54J, and ces of opposite sign. Above the temperature of vortex-pattern

therefore, af =T, < J the integer vortices are strongly bound disordering, the restrictions for the distances between frac-
in pairs. ’It has Cbeen already mentioned in Sec. V that thdional vortices related with the separations between domain

kinks on both types of zero-energy domain wdls the v_valls in stripe defects Wi|| no longer exist. It_Iooks rther
background of statéa)] are neutral. Therefore the mecha- likely® that in such a situation one can consider fractional
nism which forcesT,, to be lower thanT, in the fully frus-
trated models on square and triangular latfitégre most
probably does not work.

In the considered model the fractional vortices appear at
points where two type | zero-energy domain walls cross eact
other. Figure 7 shows an example of such a crossing. Note
that after crossing one of the walls has to be transformed intc
a type Il domain wall. The energy of this state is above the
ground state energy because one of the vortex clusters cor
tains only two positive vortices instead of three. The accurate
summation of the nominal values of the variabfgsalong a
closed loop going around this cluster demonstrates the misfi
of 7/4 with respect to what one could expect from counting
the number of positive and negative half-vortices inside this
loop. The value of the misfit is the same for all closed loops
surrounding the anomalous cluster and should be compen-
sated by a continuous rotation of the phase by the same angle FIG. 7. An example of a fractional vortex.

T= gozrm, (62)
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vortices.(at the.scales that are Iayge i_n conjparison with the H=-3> coS B~ a5) + Emagn (63)

correlation radius as really logarithmically interacting ob- (k)

jects. The same approach may be also applicable to a finite ) .

system aflf <T, if its linear size does not exceed the size- Where 6= ¢~ ¢~ Ay includes only the contribution from

dependent correlation radiog(L) introduced in Sec. v C. In  the external magnetic field, defined by K@), whereas the

both cases one can speculate about the possibility of a phaggalogous co_ntr|but|on from the currents is denaigdThe

transition related with the unbinding of neutral pairs formegSecond term in Eq63),

by logarithmically interacting vortex clusters of anomalous 1 ~

sizes. Emagn: EE Lajzlgq)aq)ﬁa (64)
Substitution ofQ=1/8 into Eg. (62) allows one to find ap

that the temperature of this phase transition can be estimatggl the energy of the current-inducédcreeniny magnetic

as fields expressed in terms of

(DOE
o s b =— a:
Tey =~ —I'y=—=J=0.013. @ Tk
V= 10g 0 9616 27

(65)

the magnetic fluxes of these fields through the plaquettes of
This is an estimate from above which neglects the renormalthe array(denoted by Greek letteyd.,; being the matrix of
ization of I' by thermal fluctuations. Comparison with the mutual inductancé8 between the plaquettes.
estimateT;=0.01) obtained in Sec. VI suggests that in the  The values of the variables, should be found from the
fully frustrated XY model on an infinite dice lattice the de- minimization of H. The result of the variation of Eq63)
struction of phase coherence will be triggered by the disorwith respect taay, can be rewritten as
dering of the vortex pattern, which can be expected to occur
at a temperature where the logarithmic interaction of frac- D=2 Loglg, (66)
tional vortices afl is too weak to keep them bound in pairs. B

On the other hand, in a situation when the size of thayherel, is the so-called mesh curréft® which can be as-

system is insufficient to exclude the giant finite-size effectsgciated with the p|aquet§é_ The currents in the junctions,
leading to the disordering of the vortex pattern at any tem-

perature(see Sec. V § one can still discuss the possibility I =To SIN(B) — &),
of a phase transitiofslightly smeared by the finite-size ef- 576 given by the difference of mesh currents in the two
fects, in which the loss of phase coherence will occur aSplaquettes ey, and a, sharing the bondjk),
the result of the unbinding of fractional vortices at
T=Tg,~0.01J. In numerical simulations this phase transi- = oy = - (67)
tion can be observed by analyzing if vortex clusters of o ,
anomalous sizes are bound in neutral pairs or not. Howevef,ne substitution of Eq(66) into Eq. (64) allows one to re-
at T~ 0.01) one should be specially attentive about checking/Vrite it in the more familiar form as
if the time of simulation is sufficient for the equilibration of 1
the vortex subsystem, which at such temperatures will re- Emagn= EE Laglal -
quire much longer times than the equilibration of the spin- ap
wave subsystem. It is not clear if in numerical simulations of | the regime of weak screening one can assume that the
Ref. 15(discussed in more detail in Sec. Vithis condition  yajues of the currents are not affected by their magnetic
was really satisfied. fields and calculateE g, replacing Iy by 19=1sin 6.
Nonetheless, the calculation of the first term in E&B) with
VIl. MAGNETIC EFEECTS the same accuracy requi.res.one to fcake into account its de-
pendence ody,. The contribution to this term which is linear
It has been already mentioned in the Introduction that thén aj has a form

main interest to the uniformly frustratedyY models has ap- -3 O
peared in relation to their application for the description of o ik Sk
Josephson junction arrays in external magnetic field. Since
we have found that in the case of the fully frustrated modeknd with the help of Eq¥64)—(67) can be shown to be equal
on a dice lattice the order-from-disorder mechanism for thé0 —2E,,g, WhereE,4nis calculated for the “bare” values of
removal of an accidental degeneracy is extremely inefficientcurrents,IfE). Therefore, in the regime of weak screening,
in a physical situation one should also take into account,q, the total magnetic correction to the Hamiltonian of a
other possible mechanisms. In the case of a proximitydosephson junction array is equalBg,g, but has the oppo-
coupled array, the most important of them is related to thesite sign,
magnetic interactions of currerts26:45

When the proper magnetic fields of currents in the array Himagn™ ~ Emagn
are taken into account, the Hamiltonian of the frustraxéd The comparison oE,q4,in different periodic states in a
model should be replacét’ by fully frustrated superconducting wire network with the dice
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lattice geometry has been recently made in Ref. 26. Since in w T\

terms of the gauge-invariant phase differenégshe struc- T< Tmagn™ (;E_ ~0.30,

ture of these states is in one-to-one correspondence with the ®

ground states of the fully frustratedy model with the same \here we have puff=5 K. Thus atr<0.1, where the
geometry, the same results are also applicable to an arrayrtex-pattern ordering can be expected to occur, one can
formed by weakly coupled superconducting islands. It fol-take into account only the magnetic energies of different
lows from the results of Ref. 26 that in arrays the eXpreSSiO%tates(or domain Wa”s, Comp|ete|y neg|ecting the free en-
for Epagn (normalized per a sixfold coordinated gite the  ergy of anharmonic fluctuations. Therefore the structure of

regime of weak screening can be written as the periodic vortex pattern in the low temperature phase of a
5 proximity coupled array should be of the typa.
e€J . . . .
E =S (69) The energy of domain walls separating different versions
MO 3Eg of state(c) from each otherEpy, will be close t08H g

which will make the vortex pattern more robust with respect
where to thermal fluctuations in comparison with the¥ model.
2 However, any quantitative conclusions about the temperature
o= P of the phase transitigs) related to vortex-pattern disorder-
4m*a ing in this situation are impossible without the detailed
, L ) analysis of the energies and other properties of the topologi-
is the characteristic energy scale which dependsiothe 5 gxcitations in staté) [analogous to the one performed in
lattice constant of the array. The numerical coefficiern Sec. V for state@], which goes beyond the limits of this
Eq. (68) is determined by the structure of the vortex patternganer Nonetheless, some increase of the region of stability
in the considered ground state and can be expressed as,fihe |ow-temperature phase with the ordered vortex pattern
linear combination of the coefficienis>0 defining the mu- g jnevitable, which allows one to conclude that the scenario
tual inductances,L;=-\ja, between different pairs of ', \yhich the unbinding of fractional vortices with topologi-
plaguettes on a dice lattice. Here'1 corresponds 10 the o) charges +1/8 takes place as an independent phase tran-
nearest neighbors=2 to the next-to-nearest neighbors, etc. gition is impossible.

The main conclusion of Ref. 26 is that in the fully frus- " eiysion of the magnetic interactions into analysis im-
trated system with the dice lattice geometry the coefficeent 65 also the situation with respect to the finite-size ef-
is thg:- .Iargtlest in the stat_(a:). For example, the numerical fqts. ForEpy, ~ J2/ Eq the probability to have a domain wall
coefficient in the expression, crossing the whole systelof the width L) becomes negli-
gible for

JZ

5Hmagn: ?nagn_ H(r:nagn: M=
E(I) qu

L>L.~—7,

for the difference between the magnetic energies of the states T

(@ and(c), which at7<1 is a much more mild restriction than the one

- 1 obtained in Sec. V for th&Y model.
= ==(\y+3\3— Ny~ 6\5— 5\ On the other hand, it is known that the magnetic interac-
3 6 tions of currents, or, in other words, screening effects, lead to
+3\g+ Mo -+ ) ~0.17, the increase of barriers a vortex has to overcome when mov-
ing between the plaquettes of an arf&fhus, although the
is positive. growth of screening effects with a decrease in temperature
For a=8 um (Ref. 3] E4=~0.98x 10* K, which shows improves the stability of a vortex-pattern ordering, it simul-
that atT~J the differences between the magnetic energiesaneously leads to the further increase(@feady exponen-
are extremely smallgH o/ T<10% and are even smaller tially large) times required for the relaxation of the system to
than the differences between the free energies of anharmongguilibrium. This may be one of the reasons why the finite-
fluctuations. In this estimate we have assuregl10 K. frequency experiments of Ref. 31 have not demonstrated any
It should be emphasized that in proximity coupled arrayssigns of a phase transition &t 1/2.
the coupling constant has a strong temperature dependence It should also be noted that in the case when the loss of
in a wide interval of temperatures, so the decrease of thphase coherence is related to dissociation of fractional-vortex
dimensionless temperature=T/J(T) with the decrease of pairs, the universal relatiéh for the value of the two-
real temperaturd is much more strongly influenced by the dimensional magnetic penetration depth\, at the transi-
growth of J(T) than by the decrease @f Roughly speaking, tion temperature can be rewritt¢im our notation as
in the experiments of Ref. 31 the decreasd dfy 1 K cor-
responds to the decrease by one order of magnitude. A(Tey) _ QZE
This suggests that the importance of magnetic effects rap- a 8 Tey
idly grows with the decrease of. Comparison oféHagn
with 8F 5= yT?/J shows that the magnetic energy becomesAs a consequence, the smearing of the phase transition due
dominant when to the finiteness ol in the case when it is related to unbind-
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ing of fractional vortices should be more pronounced then ircounting only the sixfold coordinated sitdssed in this
the case of integer vortices. work), the largest size of the system analyzed in Ref. 15
corresponds to 58 42, whereas the majority of the data has
been taken at 24 18. It seems rather likely that analogous
simulations of a 10x 10° system, which may be required for
In the present work we have investigated the fully frus-the observation of vortex-pattern ordering in the fully frus-
tratedXY model on a dice lattice and have demonstrated thatrated XY model on a dice lattice, can become possible only
the energy of this system is minimized in the highly degen-with the further development of computational abilities.
erate family of statesdescribed in Sec. Il ¢ in which the Another result of the numerical simulations of Ref. 15 is
vortices of the same sign are grouped into clusters of threeelated to the dynamical properties of the systéamhich
The accidental degeneracy of these states can be describedirre not discussed in this papand consists of finding be-
terms of the formation of a network of intersecting zero-low 7.=0.06 the signs of a glassy behavior. Namely, the
energy domain wall$® whereas the residual entropy related relaxation of the total energy at< . becomes logarithmic
to this degeneracy is proportional to the linear size of then time (in contrast to the exponential relaxation @t 7),
system, as in the case of a honeycomb laftice. whereas the behavior of the autocorrelation function of the
The central result of this paper consists of determining thevariablest; demonstrates a dependence on the waiting time.
structure of the periodic vortex pattern which is selected at One can certainly make an attempt to relate this observa-
low temperatures by thermal fluctuations. It is shown in Fig.tion to the specific features of the considered system. For the
3(a). However, this effect is rather weak, being induced onlytemperatures and system sizes analyzed in Ref. 15 one can
by the anharmonic fluctuations. As a consequence of a higsafely neglect the fluctuation-induced free energy of zero-
den gauge symmetry, the free energy of the harmonic flucenergy domain walls and treat them as objects with zero free
tuations turns out to be the same for all ground states. Thenergy. It seems rather likely then that the typical state ob-
same conclusion is applicable also to quantum generalizdained after cooling down the system from
tions of the model both at a finite and at zero temperaturer~ 1 to 7<Ey/J can be described as a network formed by
when one should speak of zero-point fluctuations. zero-energy domain walls, which contains a large number of
The destruction of the periodic vortex pattern with the pointlike defects, such as kinks and intersections, which cost
increase of temperature is related to the proliferation of doan additional energy. We know that the intersections with
main walls. The dimensionless temperatureT/J, at which ~ zero energy are also possidlsee Fig. )], but one can
the corresponding phase transition can be expected to talexpect that the majority of the intersections formed during
place can be estimated ag~0.01, where one factor of 0.1 cooling down from a disordered state will not have the opti-
is related to the smallness of the energy of the particulamal structure necessary for that.
pointlike defects on domain walls, and the otkehich is of The glassy behavior can be then expected from the neces-
the logarithmic origin to the extreme smallness of the sity of the disentanglement of this domain wall network with
fluctuation-induced free energy of zero-energy domainghe decrease of temperature. For different temperatures
walls. The analysis of possible scenarios suggests that ttabove ., the equilibrium concentration of pointlike defects
loss of phase coherence in the considered system can Isbould be different. However, in contrast to kinks on a do-
expected to take place at the same temperature as the disonain wall whose number can be changed due to annihilation
dering of the vortex pattern. of two kinks of opposite sign$which may be a relatively
The extreme smallness of the fluctuation-induced free enfast process to change the number of the intersections of
ergy of domain walls will manifest itself also in the huge domain walls one has to change the number of these walls,
prominence of the finite-size effects consisting of the appeamwhich will require much longer times than the annihilation of
ance of domain walls crossing the whole system and leadinginks. In particular, it seems rather likely that the processes
to the disordering of the vortex pattern evenrat 7. As a  related to the annihilation of zero-energy domain walls cross-
consequence, even at the “optimal” temperature,0.87,,  ing the whole system will be characterized by relaxation
the linear size of the system required to observe the vorteximes diverging with the system size, providing thus a source
pattern ordering should be much larger thdi'~2x10%  for a genuine glasslike behavior.
However, in smaller systems one can still discuss a possibil- On the other hand, even if the times characterizing the
ity for the observation of a phase transition related to the losselaxation of the vortex pattern are not divergent in the ther-
of phase coherence and consisting of unbinding of pairs ofmodynamic limit and are restricted only by the barriers
logarithmically interacting vortex clusters of anomalouswhose typical height remains of the orderbfthis already
sizes, which can be expected to happemat-0.01. can be the source for a glassylike behavassociated with a
Our conclusions are consistent with the results of the nuwide distribution of such barrierat 7<1 in a wide interval
merical simulations of the same model by Cataudella an@f times. For example, exp/0.05 ~ 10°, whereas in Ref. 15
Fazid®® who have investigated the temperatures down tadhe anomalous relaxation has been studied only at much
7=0.01 and have found no signs of vortex-pattern orderingshorter times. In such a case one can argue that the observa-
The results presented in Sec. V demonstrate that even if th@én of a glassylike behavior in the consider&¥ model is
lowest temperatures investigated in Ref. 15 were indeed beossible due to a combination of three factors, nantglyhe
low 7, the size of the system was definitely not sufficient forexistence of zero-energy domain wal(s) the special inef-
the observation of such an ordering. In the notation based ofectiveness of the order-from-disorder mechanism for the

VIll. CONCLUSION
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removal of an accidental degeneracy, did the anoma-
lously low transition temperaturér.~ 0.01). However, the
choice between the two scenari@enuine glass vs the dy-
namical freezing of vortex relaxatipshould be made on the
basis of a much more detailed analysis of the domain-walls
disentanglement. The author is grateful to B. Dougot and P. Martinoli for

In the experimental situation, the magnetic interactions ohumerous useful discussions. This work has been supported
currents in a Josephson junction array will be of greater imin part by the Program “Quantum Macrophysics” of the Rus-
portance for the stabilization of a particular vortex patternsian Academy of Sciences, by the Program “Scientific
then the anharmonic fluctuations. This mechanism leads t8chools of the Russian Federatidi®rant No. 1715.2003)2

periodic vortex pattern less vulnerable with respect to fluc-
tuations.
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