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A highly degenerate family of states, in which the adjacent plaquettes with the same sign of vorticity form
clusters of threefproposed in Phys. Rev. B63, 134503s2001dg, is proven to really minimize the Hamiltonian
of the fully frustratedXY model on a dice lattice. The harmonic fluctuations are demonstrated to be of no
consequence for the removal of the accidental degeneracy of these states, so a particular vortex pattern can be
stabilized only by the anharmonic fluctuations. The structure of this pattern is found and the temperature of its
disordering due to the proliferation of domain walls is estimated. The extreme smallness of the fluctuation-
induced free energy of domain walls leads to the anomalous prominence of the finite-size effects, which
prevents the observation of vortex-pattern ordering in numerical simulations. In such circumstances the loss of
phase coherence may be related to the dissociation of pairs of fractional vortices with the topological charges
±1/8. In a physical situation the magnetic interactions of currents in a Josephson junction array will be a more
important source for the stabilization of a particular vortex pattern then the anharmonic fluctuations.
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I. INTRODUCTION

The uniformly frustratedXY model has been introduced
by Teitel and Jayaprakash1 for the description of a regular
array of superconducting islands connected with each other
by Josephson junctionssa Josephson junction array2d in the
presence of a uniform magnetic field. During the last two
decades the main attention has been concentrated on the
investigation3–16of so-called fully frustrated modelsson vari-
ous latticesd, which in terms of array correspond to having a
half-integer number of the superconducting flux quanta per
plaquette.3 The models belonging to this class can be also
used for the description of a planar magnet in which the
neighboring spins can have either ferromagnetic or antiferro-
magnetic interaction, the number of the antiferromagnetic
bonds in each plaquette being odd.17

The ground states of the uniformly frustratedXY models
are characterized by the combination of the continuous and
discrete degeneracies.1 The former is related to the invari-
ance of energy with respect to the global phase rotation,
whereas the latter can be discussed in terms of the formation
of a particular vortex pattern. In the fully frustrated models
the numbers of plaquettes which contain positive and nega-
tive vortices should be equal to each other.

Since vortices of the same signs repel each other, the en-
ergy is minimized when the vorticities of neighboring
plaquettes are of the opposite signs. On a square lattice this
requirement can be simultaneously satisfied for all pairs of
neighboring plaquettes, which allows one to conclude that
the ground state has the checkerboard structure and a twofold
discrete degeneracy.17 With increase of temperature two dif-
ferent phase transitions can be expected to take place,3 one of
which is related to the loss of phase coherence and the other
can be associated with vortex-pattern disordering. The analy-
sis of the mutual influence between the two types of topo-
logical excitations shows that in the case of a square lattice
the former has to take place at lower temperature than the
latter.14

A triangular lattice also allows for the construction of a
doubly degenerate pattern in which the vorticities are of the
opposite signs for all pairs of neighboring plaquettes.4,5 It
turns out to be possible to demonstrate that the thermody-
namic properties of the fully frustratedXY model on a trian-
gular latticesincluding the sequence of phase transitionsd are
completely analogous to those of the model on a square
lattice.14

On a honeycomb lattice the situation is more complex
because the family of ground states of the fully frustratedXY
model is characterized by an infinite accidental degeneracy,6

which can be described in terms of the formation of parallel
zero-energy domain walls.9,10,18 In such a case the structure
of the vortex pattern at low, but finite temperatures cannot be
determined without taking into account the contribution to
free energy from the small amplitude fluctuations in the vi-
cinities of different ground states. This mechanism of the
removal of an accidental degeneracy19,20 is often referred to
as “order-from disorder.” In systems with a continuous de-
generacy it is usually sufficient to compare the contributions
from harmonic fluctuations.20–22

Recently it has been discovered that in the fully frustrated
XY model on a honeycomb lattice the order-from-disorder
mechanism does not work at the harmonic level.16 The dif-
ference between the free energies of fluctuations appears
only when one takes into account the anharmonicities, and,
as a consequence, is proportional not to the first, but to the
second power of temperature. This feature leads to the un-
usual prominence of the finite-size effects.16

The present work is devoted to the investigation of the
fully frustratedXY model on a dice lattice23 ssee Fig. 1d. Like
square, triangular, and honeycomb lattices, the dice lattice
consists of identical plaquettesswhich in this case are rhom-
bicd and equivalent bonds. Since the invariant description of
a Josephson junction array can be achieved only in terms of
variables which are defined on lattice bondsfthe gauge-
invariant phase differences, see Eq.s4dg, and not on sites, the
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dice lattice can be considered as one of the four basic lattices
for the investigation of the uniformly frustratedXY models.
On more complex latticesscontaining nonequivalent
plaquettesd the correspondence between an array and a frus-
tratedXY model is likely to be broken as a consequence of
the phenomenon of the “hidden incommensurability,” related
to the redistribution of magnetic field between the plaquettes
by screening currents in asymmetric superconducting
islands.24,25

Recently a hypothesis has been but forward13 that in the
ground states of the fully frustratedXY model on a dice
lattice the vortices of the same sign form three-vortex clus-
ters striadsd, and a highly degenerate family of states has
been proposed, which satisfies this criterion and can be de-
scribed in terms of the formation of a network of intersecting
zero-energy domain walls. In Sec. II we present a rigorous
proof that these states indeed correspond to the absolute
minimum of energy.

Section III is devoted to the analysis of harmonic fluctua-
tions. We reveal the existence of a hidden gauge symmetry,
which allows one to conclude that for a particular choice of
boundary conditions the set of the eigenvalues of the har-
monic Hamiltonian is exactly the same for all ground states.
As a consequence, the free energy of the harmonic fluctua-
tions cannot be the source for the selection of a particular
vortex pattern. This conclusion is valid also for quantum
generalizations of the model. All these properties resemble
very much the analogous properties of the fully frustratedXY
model on a honeycomb lattice.16

In Sec. IV the lowest order contribution to the free energy
of anharmonic fluctuations is considered. In particular, the
gauge symmetry mentioned above is applied to demonstrate
that the contribution related to the fourth-order terms in the
Hamiltonian is the same for all ground states and, therefore,
is of no consequence for the selection of a particular vortex
pattern. The continuous approximation is used to show that
the fluctuation-induced interaction of zero-energy domain
walls is extremely weak and decays inversely proportionally
to the fifth power of the distance between them. The com-
parison of the numerically calculated free energies of anhar-
monic fluctuations in different periodic ground states allows
us to establish the vortex pattern which can be expected to be
stabilized at low temperatures and to find the fluctuation-
induced free energy of zero-energy domain walls.

In Sec. V we analyze how the vortex pattern selected by
anharmonic fluctuations becomes disordered when one takes
into account the fluctuations of another type, namely, the
formation of domain walls, and propose an estimate for the
temperature of the phase transition which can be associated
with the proliferation of such defects. In this section we also
discuss the finite-size effects which interfere with the obser-
vation of vortex-pattern ordering in finite samples and show
that in the considered system they are extremely prominent
sexactly for the same reasons as in the case of a honeycomb
latticed.

In Sec. VI the interplay between the vortex-pattern disor-
dering and the loss of phase coherence is considered,
whereas Sec. VII is devoted to a discussion of another
mechanism of the removal of an accidental degeneracy re-
lated to magnetic interactions of currents in the array.25,26 In
the concluding Sec. VIII our results are summarized and
compared with the results of numerical simulations of Cat-
audella and Fazio.15

The interest in magnetically frustrated systems with dice
lattice geometry has appeared after Vidalet al.27 discovered
that at full frustration the ground state of a single electron,
which can jump between the nearest sites of a dice lattice, is
infinitely degenerate and that the corresponding wave func-
tion can be chosen as an arbitrary linear combination of an
infinite number of extremely localized wave functions, each
of which covers only a finitesand smalld number of sites.
Since it is known that the structure of the superconducting
state in a wire network is determinedsin the mean-field ap-
proximationd by the structure of the ground-state wave func-
tion of the single-electron problem with the same geometry,28

a suggestion has been put forward that at full frustrateion the
superconducting state in a dice network may have a disor-
dered sglassy-liked structure.27,29 However, recently it has
been shown26 that the inclusion into analysis of the forth-
order term of the Ginzburg-Landau functional strongly de-
creases the ambiguity in the determination of the structure of
the superconducting state in a fully frustrated wire network
with the dice lattice geometry. The set of states minimizing
the free energy of such a network turns out to be in one-to-
one correspondence with the set of the ground states of the
fully frustratedXY model discussed in this paper. In recent
years magnetically frustrated wire networks and Josephson
junction arrays with the dice lattice geometry have both been
the subject of active experimental investigations.29–31

II. THE MODEL AND THE GROUND STATES

A. The definition of the model

A uniformly frustratedXY model1 can be defined by the
Hamiltonian32

H = − Jo
s jkd

cosswk − w j − Ajkd, s1d

where the summation is performed over all bondss jkd of a
regular two-dimensional lattice. In terms of a Josephson
junction arrayJ is the Josephson coupling constant of a
single junction, fluctuating variablesw j are the phases of the

FIG. 1. Dice lattice is the simplest periodic lattice which can be
constructed from identical rhombic plaquettes with three different
orientations.
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order parameter on superconducting grainsj forming the ar-
ray, whereas quenched variables,

Ajk =
2p

F0
E

r j

r k

drA sr d, s2d

are defined by the integral of the vector potentialAsr d of the
external magnetic field along the bonds jkd, F0 being the
superconducting flux quantum. The form of Eq.s1d assumes
that the currents in the array are sufficiently small, so their
proper magnetic fields can be neglected.

When the magnitude of the field corresponds to a half-
integer number of flux quanta per plaquette, the directed sum
of Ajk;−Akj along the perimeter of a plaquette in the posi-
tive directionswhich below is designated asohd has to sat-
isfy the constraint

o
h

Ajk = psmod 2pd s3d

on each plaquette of the lattice. In such a case the model is
called fully frustrated.3 In a more general case of a uniformly
frustratedXY model, the right-hand side of Eq.s3d should be
replaced by 2pfsmod 2pd, where the frustration parameterf
describes the magnitude of the external magnetic field in
terms of the number of flux quanta per plaquette. It is suffi-
cient to consider the intervalf Pf0, 1

2
g, because all other

values of f can be reduced to this interval by a simple re-
placement of variables.1 The term “fully frustrated” is used
for the case off =1/2, themaximal irreducible value off.

Since both variablesw j and variablesAjk depend on a
choice of a gauge, it is often more convenient to describe
different states of the system in terms of the gauge-invariant
phase differences,

u jk = wk − w j − Ajk ; − ukj, s4d

defined on lattice bonds. Below we will always assumeu jk to
be reduced to the intervals−p ,pd. It follows from the defi-
nition of these variables that in the fully frustrated model
they have to satisfy the constraints,

o
h

u jk = psmod 2pd, s5d

completely analogous to Eq.s3d. One usually says that a
given plaquette contains a positivesor negatived half-vortex
when the left-hand side of Eq.s5d is equal to +p sor −pd.
Different minima of the Hamiltonians1d sincluding the
ground statesd can be then identified in terms of a corre-
sponding vortex configuration.

The variation of Eq.s1d with respect tow j results in the
current conservation equation for the sitej , the value of the
current in the junctions jkd being given by

I jk = I0 sinu jk, s6d

whereI0=s2e/"dJ is the critical current of a single junction.

B. Minimization of energy

The dice latticesFig. 1d is formed by two types of sites,
with the coordination numbers three and six, connected with

each other in such a way that each bond connects two sites
with different coordination numbers. Below we will always
use indexk to denote the threefold coordinated sites of a dice
lattice and indexj to denote the sixfold coordinated sites. For
example, the bonds jkd connects the sixfold coordinated site
j with the threefold coordinated sitek.

The minimization of the Hamiltonians1d with respect to
all variableswk for the given values of the variablesw j can
be performed exactly. To describe the result of this procedure
it is convenient to introduce also the gauge-invariant phase
differencesx j j 8;−x j8 j defined on the bonds of the triangular
latticeT formed by the sixfold coordinated sitesj . A natural
way to do it consists of requiring that for each triangle
formed by the sitesj , j8, andk swherej and j8 are the nearest
neighbors ofkd the sum of the three gauge-invariant phase
differences taken along its perimeter in the positive direction
should be equal to ±p /2 modulo 2p, where the sign should
be the same for all triangles. In what follows we assume this
sign to be negative,

x j j 8 + u j8k + ukj = − p/2smod 2pd. s7d

Since x j j 8=−x j8 j, the constraints5d then automatically fol-
lows from Eq. s7d. On the other hand, on each triangular
plaquette ofT the directed sum of the variablesx j j 8 has to
satisfy the constraint

o
h

x j j 8 = p/2smod 2pd, s8d

which can be obtained by summation of Eq.s7d for three
neighboring triangles with the common citek.

The minimization of

Ek = − Jo
a=1

3

cosu jak

swhere ja with a=1,2,3 are thethree nearest neighbors ofk
on a dice lattice numbered in the positive directiond with
respect towk for the given values ofx j1j2

, x j2j3
, and x j3j1

satisfying the constraints8d gives

Ek = − JÎ3 − 2Yk

where

Yk = sinx j1j2
+ sinx j2j3

+ sinx j3j1
ø 3/2.

SinceEsYd=−JÎ3−2Y is a concave function ofY and the
sum of the variablesYk over the whole lattice with the peri-
odic boundary conditions should be equal to zero, the abso-
lute minimum of

H = o
k

EsYkd

on such a lattice is achieved whenYk=0 for all k. In the next
section we demonstrate that this requirement can be simulta-
neously satisfied on all plaquettes. Accordingly, the value of
energy in the absolute minimum is given byE=−2Î3JN,
whereN is the total number of the sixfold coordinated sites.
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C. Construction of ground states

In the case of an isolated triangle the system of two equa-
tions

x1 + x2 + x3 = p/2,

sinx1 + sinx2 + sinx3 = 0,

for three variablesx1, x2, andx3 has an infinite number of
solutions. However, the requirement to match the solutions
on all triangular plaquettes ofT leads to the removal of this
continuous degeneracy.

Since the form of the constraints8d corresponds to having
one-quater of flux quantum per plaquette, the minimal el-
ementary cell whose periodic repetition allows one to con-
struct a periodic solution consists of four triangles. Such a
solution can be described by six variablesxi. Figure 2sad
shows how they can be defined for a particular choice of the
shape of an elementary cell. These six variables have to sat-
isfy three flux quantization constraints of the form given by
Eq. s8d:

x1 + x2 + x3 = p/2, s9ad

x4 + x5 + x6 = p/2, s9bd

− x3 − x4 − x5 = p/2, s9cd

and three equations of the formYk=0:

sinx1 + sinx2 + sinx3 = 0, s10ad

sinx4 + sinx5 + sinx6 = 0, s10bd

− sinx3 − sinx4 − sinx5 = 0, s10cd

which, according to the results of Sec. II B, is required for
the minimization of energy. The fourth constraint,

− x1 − x2 − x6 = − 3p/2,

and the fourth equation of the formYk=0,

− sinx1 − sinx2 − sinx6 = 0,

are then satisfied automatically, as follows from the summa-
tion of Eqs.s9d and Eqs.s10d, respectively.

We have found that the numerical solution of the system
of six equationsfEqs. s9d and s10dg by an iterative method
always converges to the solution shown in Fig. 2sbd or to
another analogous solution in which variablesx are equal to
0, −p /4, and 3p /4 on one-half of the triangular plaquettes
and top, p /4, and 3p /4 on the other half. Note that each
variablex belongs to two neigboring plaquettes, but mani-
fests itself on them with the opposite signs. The same results
are also obtained when one assumes that the elementary cell
has a different shape, shown in Fig. 2scd.

Quite remarkably, an attempt to construct a solution with
a larger elementary cell leads to an overdefined system of
equations. For example, an elementary cell consisting of
eight triangles requires one to introduce 12 variablesxi
which have to satisfy seven independent constraints of the
form s8d and seven independent equations of the form
Yk=0. Apparently, one cannot expect a system of 14 equa-
tions for 12 variables to have a nontrivial solution which
cannot be constructed from the solutions obtained for a four-
triangle elementary cell. Thus the reduction of the problem to
a triangular lattice has allowed us to make a conclusion on
the size of the elementary cell which would be hardly pos-
sible in the framework of analysis in terms of the original
variablesu jk defined on the bonds of a dice lattice.

In Fig. 2sdd the structure of the elementary cell of Fig.
2sbd is shown in terms of the variablesu jk. Here single,
double, and triple arrows correspond, respectively, to three
different values ofu jk,

u1,3= arccosS 1
Î3

±
1
Î6

D, u2 = arccosS 1
Î3

D ,

satisfying the constraints

u2 − u1 = p/4, u1 + u3 = p/2, u2 + u3 = 3p/4,

which lead to the fulfilment of Eq.s5d on all rhombic
plaquettes, and the current conservation equation,

sinu1 + sinu2 = sinu3,

the form of which follows from Eq.s6d.
The most compact way of illustrating a structure of a

given statesa local or global minimum of the Hamiltoniand
consists of showing which plaquettes are occupied by posi-
tive and which plaquettes by negative half-vortices. In Fig.
3sad this approach is used to demonstrate the structure of the
ground state which is obtained by the periodic repetition of
the elementary cell shown in Fig. 2sdd. Notice that positive
and negative half-vortices are grouped into clusters of three
striadsd. The rules which allow one to restore the values of
u jk for each bond from the structure of the vortex patternsin
a ground stated can be found in Ref. 13.

Since positive and negative half-vortices can be consid-
ered as occuping the cites of the dual latticeswhich in the
present case is akagomelatticed, the structure of a given
state of the fully frustratedXY model on a dice lattice can be
compared with the structures of different states of the anti-

FIG. 2. Construction of a periodic ground state:sad a possible
structure of an elementary cell;sbd one of the solutions of Eqs.s9d
and s10d; scd an alternative elementary cell; andsdd the same el-
ementary cell as insbd, but in terms ofu jk.
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ferromagnetic Ising model on akagomelattice. In particular,
according to Wolf and Schotte,33 in the framework of the
Ising model the state with the structure shown in Fig. 3sad is
selected whenJ1@J2@J4.0 and all other couplings are
equal to zero. HereJi is the coupling constant forith neigh-
bors on akagomelattice, and we have used the notation of
Ref. 26 for the classification of dice lattice plaquettes as
neighbors of each other.

The ground state whose structure is shown in Figs. 2sdd
and 3sad allows for the creation of infinite domain walls
which brake the periodicity of this state but does not cost any
energy.13 These zero-energy domain walls can be of the two
types.

Figure 3sbd shows an example of a zero-energy domain
wall of the type I. Note that the orientations of triads formed
by negative half-vorticesswhite plaquettesd are different
above and below the wall. The configuration of arrowssde-
fining the values of the variablesu jkd after crossing such a
wall can be obtained from the old configurationsin the ab-
sence of the walld by its reflection with respect to a line
which is perpendicular to the wall and subsequent inversion
of all arrows. There can exist an arbitrary number of such
domain walls in parallel to each other. By creating them at
every possible position one obtains another periodic ground
state shown in Fig. 3scd.

Figure 3sdd shows an example of zero-energy domain
wall of the type II. After crossing such a wall the variablesu
are changedsin comparison with what they would be in the
absence of the walld according to an even more simple rule,
which can be codified as

u1 → u3, u3 → u1, u2 → − u2. s11d

Note that both black and white triads have different orienta-
tions on two sides of the wall, whereas at the wall the shape
of white triads is modified.

Again, there can exist an arbitrary number of the type II
domain walls parallel to each other. By inserting them at
every possible position one obtains one more periodic
ground state shown in Fig. 3sed, in which all triads have the
modified shape. Alternatively, one can start the whole con-
struction from the periodic state of Fig. 3sed and obtain the
state of Fig. 3sad by introducing a dense sequence of domain
walls on crossing which the same rule, Eq.s11d, is appli-
cable.

The zero-energy domain walls of different types can cross
each other without increasing energy. However, it follows
from the rule for the transformation of the state induced by
the type I domain wallsdescribed aboved that a type II do-
main wall should change its orientation byp /3 each time it
crosses a type I domain wallfsee Fig. 3sfdg. A dense network
of zero-energy domain walls of both types constructed on the
background of statesad leads to the periodic ground state
shown in Fig. 3sgd. The structures of the periodic statessad,
scd, sed, andsgd in terms of the variablesu jk are shown in Fig.
3 of Ref. 26.

Note that the formation of zero-energy domain walls is
related to the changes of the orientation of vortex triadssand,
in the case of type II domain walls, also of their shapesd, but
does not lead to the appearance of vortex clusters of other
sizes.

III. HARMONIC APPROXIMATION

A. Two families of eigenmodes

The Hamiltonian describing the harmonic fluctuations in
the vicinity of one of the ground states described in Sec. II C
can be written as

FIG. 3. The structure of some ground states. The plaquettes with positive vorticities are marked in black.
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Hs2d =
1

2o
s jkd

Jjksuj − vkd2, s12d

whereuj are deviations of the variablesw j from their equi-
librium values on sixfold coordinated sites,vk are analogous
deviations on threefold coordinated sites and the coupling
constantsJjk;J cosu jk acquire one of the three possible val-
ues

J1,3= S 1
Î3

±
1
Î6

DJ, J2 =
J
Î3

, s13d

in accordance with the value ofu jk on the bonds jkd.
If phase dynamics in a Josephson junction array can be

assumed to be nondissipative and the capacitance matrix of
the array has only diagonal elements, the linearized equa-
tions of motion for the variablesuj and vk following from
Eq. s12d can be written as

s2JS− M6v2duj = o
k=ks jd

Jjkvk, s14ad

sJS− M3v2dvk = o
j=jskd

Jjkuj , s14bd

whereJS=J1+J2+J3, Mi =s" /2ed2Ci swherei =3,6d, andjskd
denotes the nearest neighbors ofk. In Eqs. s14d we have
performed the Fourrier transformation to the frequency rep-
resentation and have assumed that the self-capacitances of
the superconducting islands,C3 andC6, are different for the
two types of islands.

Note that in all ground states discussed in Sec. II C the
coupling constantsJjk always have the same three valuessJ1,
J2, andJ3d on the three bondss jakd connected to any sitek,
as a consequence of which the coefficient standing in the
left-hand side of Eq.s14bd does not depend onk. This allows
one to conclude that all eigenmodes withuj ;0 should have
the same eigenfrequencyv0=sJS/M3d1/2. In the thermody-
namic limit the degeneracy of this eigenfrequency is equal to
one-third of the total number of modes.

The spectrum of the brunch withuj Þ0 can be found from
the equation which is obtained after substitution of Eq.s14bd
into Eq. s14ad and can be written as

Lsvduj = o
j8=j8s jd

Kjj 8suj − uj8d, s15d

where

Lsvd = s2M3 + M6dv2 −
M3M6

JS
v4, s16d

j8s jd are the six nearest neighbors ofj on T and

Kjj 8 = sJjk8Jj8k8 + Jjk9Jj8k9d/JS, s17d

k8 andk9 being the two threefold coordinated sites belonging
to the same rhombic plaquette asj and j8.

The right-hand side of Eq.s15d has exactly the same form
as the equation describing harmonic fluctuations on a trian-
gular lattice with the nearest-neighbor interaction character-
ized by the coupling constantsKjj 8 defined by Eq.s17d. Quite

remarkably, in all the ground states described above these
coupling constants acquire only two values,

K1 =
2J1J3

JS
=

J

3Î3
, s18ad

K2 =
sJ1 + J3dJ2

JS
=

2J

3Î3
, s18bd

which differ from each other by a factor of 2. When a half-
vortex in the plaquettek jk8 j8k9l is the central vortex of a
triad to which it belongs,Kjj 8=K1, whereas otherwise
Kjj 8=K2. In all the ground states described in Sec. II C these
couplings are distributed between the bonds ofT in such a
way that in each triangular plaquettes one bond has
Kjj 8=K1, whereas the two other bonds haveKjj 8=K2.

B. Comparison of different ground states

In the statesed all sixfold coordinated sites have the iden-
tical environment in terms of the coupling constantsJjk. As a
consequence, the values of the coupling constantsKjj 8 in this
state depend only on the orientation of the bondss j j 8d. For
two of the three possible orientations of the bonds they are
equal to each other, see Fig. 4sad. If all sixfold coordinated
sites j are renumbered by pairs of integers with the same
parity sn,md as shown in Fig. 5, Eq.s15d in this state can be
rewritten as

f2KS− Lsvdgun,m = K1
smdun+1,m+1 + K2

smdun−1,m+1

+ K1
sm−1dun−1,m−1 + K2

sm−1dun+1,m−1

+ K2fun+2,m + un−2,mg, s19d

whereKS=K1+2K2 and

K1
smd = K1, K2

smd = K2, s20d

for all values ofm.
For K1,2

smd given by Eq.s20d, Eq. s19d can be easily solved
after performing the Fourrier transformation. Substitution of

FIG. 4. The distribution of coupling constantsKjj 8 between the
bonds ofT in different states:sad statesa ande; sbd a single type I
domain wall; andscd statesc and g. Thin lines correspond to
Kjj 8=K1 and thick lines toKjj 8=K2.
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un,m~expisqn+pmd into Eq. s19d gives the dispersion rela-
tion in the form

Lsvd = 2KS− 2K1 cossq + pd − 2K2fcossq − pd + cos 2qg.

s21d

Note that Eq.s21d is of the second order inv2, which corre-
sponds to the existence of the two momentum-dependent
eigenfrequencies,v1sq,pd andv2sq,pd, for each point in the
Brillouin zone in addition tov0=sJS/M3d1/2 discussed above.

According to Eq.s11d, each zero-energy domain wall of
the type II leads to the permutation of the coupling constants
J1 andJ3 in the Hamiltonian of harmonic fluctuations. Such
a permutation does not change the factorJS−M3v2 in the
right-hand side of Eq.s14bd, and therefore does not change
neither the degeneracy, nor the frequency,v0, of the family
of the eigenmodes withu=0. Since Eqs.s18d are also invari-
ant with respect to the permutation ofJ1 and J3, such a
permutation introduces no changes to the form of Eq.s15d as
well. This means that the whole set of the eigenfrequencies
of the harmonic fluctuations in the system does not feel the
presence of the type II domain walls and is exactly the same
in all the states which can be obtained from each other by the
insertion of the type II domain walls. For example, the dis-
persion relations21d is valid not only in the statesed, but also
in the statesad, which is characterized by exactly the same
pattern of the coupling constantsKjj 8 shown in Fig. 4sad.

The zero-energy domain walls of the type I lead to a more
complex permutation of coupling constants. However, in the
terms of the coupling constantsKjj 8 the consequences of this
permutation are rather simple and reduce to the permutation
of K1 and K2 for those two orientations of the bondss j j 8d
that are not parallel to the direction of the wall,34 see Fig.
4sbd. This means that Eqs.s20d should be valid only when
dm, the number of the type I domain walls situated at
m8øm, is even and should be replaced by

K1
smd = K2, K2

smd = K1

whendm is odd.
In the presence of periodic boundary conditions in the

horizontal direction and open boundary conditions in the per-
pendicularsverticald direction the irrelevance of such permu-
tations of coupling constants for the set of eigenfrequencies
can be easily demonstrated in the framework of the mixed
representation which is obtained after performing the Four-

rier transformation with respect to the variablen, keeping the
variablem as it is. In the terms of the variableumsqd defined
in such a way, Eq.s19d can be rewritten as

f2KS− Lsvdgumsqd = Ksmdsqdum+1sqd + 2K2 coss2qdumsqd

+ Ksm−1dsqdum−1sqd, s22d

where

Ksmdsqd = K0sqdexpfiasqdsmg.

The dependence ofKsmdsqd on m enters only through
sm=s−1ddm= ±1, whereas both

K0sqd = uK1 expsiqd + K2 exps− iqdu

and

asqd = argfK1 expsiqd + K2 exps− iqdg

are independent ofm.
With the help of the simple gauge transformation

umsqd = expFiasqd o
m8,m

smGum8 sqd, s23d

which cannot not change the eigenvalues, Eq.s22d can be
transformed to the form

f2KS− Lsvdgum8 sqd = K0sqdum+18 sqd + 2K2 coss2qdum8 sqd

+ K0sqdum−18 sqd, s24d

in which all coefficients do not depend onm. This property
of Eq. s24d proves that for the considered boundary condi-
tions the whole set of eigenfrequencies is insensitive to the
presence of domain walls of the type I. Since Eq.s24d has
been derived from Eq.s19d, the form of which does not
depend on the presence of the zero-energy domain walls of
the type II, the same conclusion is applicable also in the
presence of an intersecting network of zero-energy domain
walls of both types.

Note that this does not mean that the spectrum of fluctua-
tions in an infinite system, understood as the dependence of
the eigenfrequencies on the two-dimensional wave vector, is
the same for all periodic ground states. On the contrary, it
should have different forms in the states whose transforma-
tion into each other requires the insertion of a periodic se-
quence of the type I domain walls. In particular, the disper-
sion relation in the statescd and statesgd fwhich can be
obtained from each other by the insertion of the dense se-
quence of type II domain walls and both are characterized by
the distribution of the coupling constantsKjj 8 shown in Fig.
4scdg can be obtained by substitution ofum8 sqd~expsipmd
into Eq. s24d and is of the form

Lsvd = 2KS− 2K0sqdcosp − 2K2 cos 2q. s25d

Apparently, it does not coincide with the dispersion relation
in the statessad and sed given by Eq.s21d. Note that the
elementary cell of the statescd consists of 12 sites, and,
therefore, a more straightforward approach to the derivation
of its dispersion relation would give it in the form of the
determinant of a 12 by 12 matrix.

FIG. 5. The numbering of the sixfold coordinated sites by pairs
of integerssn,md with the same parity.
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However, the free energy of harmonic fluctuations,F2,
which in a general situationsthat is, when the quantum ef-
fects are also taken into accountd can be written as

F2 = To
hvj

lnS2 sinh
"v

2T
D s26d

is determined entirely by the set of the eigenfrequencies of
the systemhvj. Thus our results demonstrate that for the
considered boundary conditions the value ofF2 is exactly the
same for all the ground states discussed above even in the
case of a finite system. For other types of boundary condi-
tions the same property will be recovered in the thermody-
namic limit.

Naturally, these conclusions should remain valid both in
the zero-temperature limit, when Eq.s26d is transformed into
the expression for the energy of zero-point fluctuations,

E2 =
"

2
E E dqdp

s2pd2fv0 + v1sq,pd + v2sq,pdg,

and in the classical limits"→0d, when the dynamical prop-
erties of the system are of no importance, and Eq.s26d is
reduced to

F2 =
T

2
E E dqdp

s2pd2 lnFLsq,pd
T

G ,

whereLsq,pd denotes the function ofq andp standing in the
right-hand side of the corresponding dispersion relation, Eq.
s21d or Eq. s25d.

Another system, in which the accidental degeneracy of its
ground states remains unbroken when the free energy of the
harmonic fluctuations is taken into account, is the fully frus-
trated XY model with a honeycomb lattice.16 The method
used in this sectionsthe construction of the gauge transfor-
mation which reduces the linearized equations of motion for
fluctuations in different ground states to the same formd pre-
sents a generalization of the approach of Ref. 16, where the
analogous gauge transformation has been constructed for the
harmonic part of the Hamiltonian.

The analysis of this section can be generalized for the
case when the capacitance matrix of a Josephson junction
array in addition to the self-capacitances of superconducting
islands also takes into accountC1, the capacitances of Jo-
sephson junctions forming the array. This will lead to the
replacement

Ja → Jasvd ; Ja − M1v2,

whereM1=s" /2ed2C1, in all dispersion relations, but will not
bring any changes in the qualitative conclusions. It is equally
possible to include into consideration an ohmic dissipation of
each junction described by a frequency-dependent harmonic
contribution to its Euclidean action.

C. Correlation functions

Since the evolution of the variablesuj can be described by
Eqs. s15d, which contain only coupling constantsKjj 8, but
not the original coupling constantsJjk, the symmetry of the

correlation function of the variablesuj in a given state will
be determined entirely by the symmetry of the configuration
of Kjj 8 in this state. In particular, in the situation when the
value of Kjj 8 depends only on the orientation of the bond
s j j 8d and can be equal only toK1 or K2, the correlation func-
tion

Gjj 8 = ksuj − uj8d
2l, s27d

where j and j8 are the nearest neighbors of each other onT,
should also be dependent only on the orientation of the bond
s j j 8d and acquire one of the two possible values, which be-
low are denotedG1 and G2. The same property can be de-
scribed by saying that in such statesGjj 8 depends only on
whetherKjj 8 is equal toK1 or to K2,

Gjj 8 =HG1 for Kjj 8 = K1,

G2 for Kjj 8 = K2.J s28d

The type II domain walls are simply of no consequence
for the values ofKjj 8 and, therefore, for the correlation func-
tions of the variablesu. On the other hand, it is rather evident
that the gauge transformations23d leaves invariant the form
of the correlation functions of the variablesun,m with the
same value ofm. This means that the correlation function
ksuj −uj8d

2l cannot be sensitive to the presence of the type I
domain walls which do not pass between the pointsj and j8.
Since the sitesj and j8, which are the nearest neighbors of
each other onT, are too close to have a domain wall passing
between them, Eq.s28d will be applicable also in the pres-
ence of an arbitrary set of zero-energy domain walls.

IV. ANHARMONIC FLUCTUATIONS

In this section and below our analysis is restricted to the
classical version of the model. It is well known that in a
classical system the leading contribution to the free energy
related to anharmonic fluctuations,Fanh=F3+F4, is the sum
of the two terms,

F3 = −
1

2T
kfHs3dg2l s29d

and

F4 = kHs4dl, s30d

whereHs3d andHs4d are, respectively, the third- and the forth-
order contributions to the expansion of the Hamiltonian in
the vicinity of a particular ground state, and angular brackets
denote the averages over thermodynamic fluctuations calcu-
lated with the help of the harmonic Hamiltonian.

In the considered problemHs3d andHs4d can be written as

Hs3d = o
k

Hk
s3d; Hk

s3d = −
1

6 o
j=jskd

Jjk8 suj − vkd3

and
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Hs4d = o
k

Hk
s4d; Hk

s4d = −
1

24 o
j=jskd

Jjksuj − vkd4,

where coupling constantsJjk are exactly the same as in the
harmonic Hamiltonian, Eq.s12d, whereas coupling constants
Jjk8 =J sinu jk acquire one of the six possible values
Jjk8 = ±J sinua in accordance with the value ofu jk on the
bond s jkd. Due to the current conservation condition cou-
pling constantsJjk8 have to satisfy the constraints,

o
j=jskd

Jjk8 = 0, o
k=ks jd

Jjk8 = 0, s31d

on all sites of the lattice.

A. Invariance of F4

In the case of a dice lattice there exists a convenient way
to separate the fluctuations on the two types of sites from
each other, which allows one to considerably simplify the
calculation of the averages in Eqs.s29d and s30d. It consists
of the replacement of variables

vk = wk + vk
s0d, vk

s0d = o
j=jskd

Jjkuj/JS, s32d

which transforms the harmonic Hamiltonians12d into

Hs2d =
1

2 o
s j j 8d

Kjj 8suj − uj8d
2 +

1

2o
k

JSwk
2, s33d

where the coupling constantsKjj 8 are, naturally, the same as
have been obtained in Sec. III B, see Eqs.s17d ands18d, after
the exclusion of the variablesvk from the equations of mo-
tion.

A simple form of Eq.s33d, in which each variablewk is
decoupled from all other variables, makes the calculation of
averages with respect to the fluctuations ofwk a very
straightforward procedure. Substitution of Eq.s32d into the
expression forHk

s4d with subsequent expansion of the result
in powers ofwk allows one to express the result of such an
averaging ofHk

s4d as a fourth-order polynomial of the vari-
ablesuj,

P4suj1
,uj2

,uj3
d = −

1

24o
a=1

3

Jas3kw2l2 + 6kw2lũja
2 + ũja

4 d,

s34d

wherekw2l=T/JS is the value ofkwkl2, which is the same for
all k, whereas

ũja
; uja

− vk
s0d =

1

JS
o
bÞa

Jbsuja
− ujb

d.

All terms which are odd inwk have disappeared from Eq.
s34d due to the corresponding symmetry of the Hamiltonian
s33d. Note that the form ofP4su1,u2,u3d does not depend on
k. To achieve that we have renumbered in Eq.s34d the three
sites j which are the nearest neighbors ofk as ja; jaskd in
such a way thatJjak=Ja.

Since Hamiltonians33d does not include linear terms, the
result of the Gaussian averaging ofP4suj1

,uj2
,uj3

d will have

the form of a second-order polynomial,P2sGj1j2
,Gj2j3

,Gj1j3
d,

whose three arguments are the nearest-neighbor correlation
functions defined by Eq.s27d. Instead of looking for the
explicit form of P2, it is sufficient to notice that since the
central vortex of a triad is always surrounded by the bonds
with Jjk equal toJ1 or J3, we will always haveKj1j3

=K1 and
Kj1j2

=Kj2j3
=K2, and, as a consequence of Eq.s28d, the result

of the averaging ofHs4d will have the same form,

kHk
s4dl = P2sG2,G2,G1d,

for all k independently of what particular ground state is
considered. Therefore the value ofF4=okkHk

s4dl will be ex-
actly the same for all the ground states which we are trying
to compare already at the level of the separate terms in this
sum.

B. Simplification of F3

The result of the averaging ofHk
s3d with respect to fluc-

tuations ofwk can be in an analogous way reduced to the
sum of two terms, the first of which,

P1suj1
,uj2

,uj3
d = −

kw2l
2 o

a=1

3

Jjak8 ũja
,

is a first-order and the second,

P3suj1
,uj2

,uj3
d = −

1

6o
a=1

3

Jjak8 ũja
3 ,

a third-order polynomial of the variablesuja
, which are as-

sumed here to be numbered in the same way as in Eq.s34d.
Both P1 and P3 depend onk only through the factor
tk= ±1, which, for example, can be chosen to be determined
by the sign ofJj1k8 .

The sum ofP1suj1
,uj2

,uj3
d over k can be reordered as a

sum overj ,

o
k

uP1suj1
,uj2

,uj3
duk = −

kw2l
2JS

o
j

Cjuj ,

where

Cj = o
k=ks jd

fJjk8 sJj8k + Jj9kd − JjksJj8k
8 + Jj9k

8 dg

and j8 and j9 are the other two nearest neighbors ofk in
addition to j . It is not hard to notice that all coefficientsCj
are equal to zero as a consequence of Eqs.s31d.

This allows one to express the result of the averaging of
fHs3dg2 over fluctuations of the variableswk as

kfHs3dg2lw = R2 + o
k

P6suj1
,uj2

,uj3
d s35d

where

R= o
k

P3suj1
,uj2

,uj3
d s36d

andP6 is a sixth-order polynomial of its arguments, the form
of which is the same for allk. Exactly like it happens with
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P4, the averaging ofP6suj1
,uj2

,uj3
d over fluctuations ofuj

produces the same expression for allk independently of what
particular ground state is considered. That means that any
difference between the values ofFanh in different ground
states can result only from the first term in Eq.s35d,

Fanh= const −
1

2T
kR2l. s37d

C. Explicit expressions

Let us start with comparing the free energies of anhar-
monic fluctuations in the statessad andsed. Instead of calcu-
lating Fanh separately for both these states it is more
convenient to construct an explicit expression directly for
dFanh

e,a=Fanh
e −Fanh

a , the difference inFanh between the states
sed and sad. Since both these states are characterized by the
same form of the effective Hamiltonian for the variablesuj,
the construction of such an expression does not require the
application of the gauge transformation given by Eq.s23d.
The same is true also for the whole set of states which can be
constructed from the statesad or statesed by the insertion of
some sequence of type II domain walls.

If the statesed shown in Fig. 3sed is rotated byp /3 in such
a way that the orientation of the possible type II domain
walls becomes horizontal, the expression forR, Eq. s36d, in
this state can be rewritten as

Re = o
m

smSm
+ , s38d

where we have again used the numbering of sites defined by
Fig. 5, sm=s−1dm,

Sm
m = o

n=msmod 2d
fP3

msun+2,m,un+1,m+1,un,md

+ P3
msun+1,m+1,un,m,un−1,m+1dg, s39d

andP3
+=tkP3 is an invariant version ofP3,

P3
+su1,u2,u3d = −

1

6JS
3o

a=1

3

Ja8Fo
bÞa

Jbsua − ubdG3
, s40d

the form of which does not depend onk. Instead of introduc-
ing a definition simply forSm

+ , we have used Eq.s39d to
define a more general objectSm

m, where superscriptm can be
equal to ±1 or 0. However, for the compactness of notation
we will usually replacem= ±1 simply by plus or minus. In
Eq. s40d the constantsJjk8 are expressed in terms of three
constants,

J18 = J sinu1 = S 1
Î3

−
1
Î6

DJ, s41ad

J28 = J sinu2 =
2
Î6

J, s41bd

J38 = − J sinu3 = − S 1
Î3

+
1
Î6

DJ, s41cd

whose sum is equal to zero in accordance with Eqs.s31d.

Substitution of Eqs.s13d ands41d into Eq.s40d allows one
to reduce it to

P3
+su1,u2,u3d = K3su2 − u3d2su3 − u1d + K38su1 − u2d3

+ K39su3 − u1d3, s42d

where

K3 =
J

6Î6
, K38 =

J

9Î6
, K39 = S 1

9Î3
−

1

36Î6
DJ.

However, in all the ground states that we consider the last
term from Eq.s42d after substitution ofP3=tkP3

+ into Eq.
s36d cancels with the analogous term from the neighboring
triangular plaquette, which allows one to putK39=0.

Each time a type II domain wall is crossed the replace-
ment of variablesu j described by Eqs.s11d has to take place.
In terms of the expression forR this procedure is translated
into the replacement of each term of the formP3

+su1,u2,u3d
by

P3
−su1,u2,u3d = − P3

+su3,u2,u1d.

As a consequence, the value ofR for the state which is ob-
tained after the insertion of the dense sequence of type II
domain wallsfthe structure of this state is obtained after
rotating Fig. 3sad by p /3g will have the form

Ra = o
m

smSm
sm. s43d

Substitution of Eqs.s38d ands43d into Eq.s37d allows one
to expressdFanh

e,a as

dFanh
e,a = No

l=1

`

Vs2l − 1d, s44d

whereVsmd is the average

Vsmd =
2

TLx
kSm1

0 Sm2

0 l, s45d

which depends only onm=m1−m2, Lx is the size of the
system in the horizontal directionsin lattice unites ofTd and
Sm

0 is given by Eq.s39d with

P3
0su1,u2,u3d =

1

2
fP3

+su1,u2,u3d − P3
−su1,u2,u3dg

=
1

2
fP3

+su1,u2,u3d + P3
+su3,u2,u1dg

being the symmetricswith respect to the permutation ofu1
and u3d part of P3

+su1,u2,u3d. The explicit expression for
P3

0su1,u2,u3d which follows from Eq.s42d is

P3
0su1,u2,u3d =

K3

2
su3 − u1d2su3 − 2u2 + u1d

+
K38

2
fsu1 − u2d3 + su3 − u2d3g. s46d

Analogous comparison of the values ofFanh in two differ-
ent states allows one to find that the free energy of a single
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type II domain wall on the background of the statesad is
given by

FDW = Lxo
m=1

`

mVsmd, s47d

whereas the interaction of two domain walls situated at
m=m1 andm=m2 can be written as

Fintsm2 − m1d = − 2Lxo
m=1

`

mVsum2 − m1u + md. s48d

D. Continuous approximation

When Eq. s46d is substituted in the expression forSm
0

given by Eq.s39d with m=0, all terms proportional toK38
cancel each other after the summation overn, so it becomes
possible to rewrite this expression as

Sm
0 = 4K3F o

n=m8smod 2d

us¹nud2s¹m8
+ udum8=m+1

− o
n=m8smod 2d

us¹nud2s¹m8
− udum8=mG , s49d

where

¹nu ;
un+2,m8 − un,m8

2

is a lattice analog of the derivative in the horizontal direction
and

¹m8
± u ; ± Fun,m8 + un+2,m8

2
− un+1,m871G

are two lattice analogs of the derivative in the vertical direc-
tion suitable for a triangular lattice. It follows from symme-
try reasons that

ks¹nuds¹m
± udl = 0. s50d

The functionSm
0 defined by Eq.s49d is a third-order poly-

nomial of variablesun,m8 belonging to the stripe with
m8=m,m+1. Accordingly, the result of the Gaussian averag-
ing of the productSm1

0 Sm2

0 will be a third-order polynomial of
the two-point correlation functions. It is not hard to check
that the only terms which survive in the expression for
kSm1

0 Sm2

0 l are the triple products of the two-point correlation
functions whose arguments belong to different stripes,
whereas all other terms cancel each other in the result of the
summation overn or as a consequence of Eq.s50d. Speaking
more precisely, due to the structure of the expression forSm

0 ,
Eq. s49d, they are the triple products of the lattice analogs of
the derivatives of such correlation functions, which for
um1−m2u@1 can be rather accurately calculated in the frame-
work of the continuous approximation.

When integer variablesn andm are replaced by continu-
ous variablesx and y, both the first and the second term in
the square brackets in Eq.s49d should be replaced by the
same integral

1

2
E dxux

2uy,

where, however,ux
2 should be calculated at the values ofy

which differ from each other by onesin this section sub-
scriptsx and y designate partial derivatives with respect to
the corresponding variablesd. This means that in the frame-
work of the continuous approximation the total expression
for Sm

0 should be replaced by

sSm
0 dcont= Î2K3E dxsux

2dyuy = − Î2K3E dxuxxuy
2. s51d

When writing Eq.s51d we have performed the integration by
parts and also the rescalingx→lx sl2=1+2K1/K2=2d,
which transforms the continuous version,

Hcont
s2d =

1

2
E E dxdyfs2K1 + K2dux

2 + K2uy
2g,

of the harmonic Hamiltonian,

Hs2d = o
n=msmod 2d

o
m
FK1

2
sun+2,m − un,md2

+
K2

2 o
l=±1

sun+1,m+l − un,md2G ,

to the isotropic form,

Hisotr
s2d =

Keff

2
E E dxdyfux

2 + uy
2g, s52d

where

Keff = Îs2K1 + K2dK2 = S2

3
D3/2

J.

Substitution of the correlation function,

Gsx,yd = const −
T

2pKeff
lnsx2 + y2d1/2,

corresponding to the Hamiltonians52d into

ksSm1

0 dcontsSm2

0 dcontl

= 2K3
2E

−`

`

dx1E
−`

`

dx2f2GxxxxGyy
2 + 4Gxxy

2 Gyyg,

fwhere all derivatives ofGsx,yd should be taken atx=x1

−x2, y=y1−y2g and subsequent integration overx1−x2 give

Vcontsmd = gc
T2

J

1

um1 − m2u7
, s53d

where

gc = 2Î2
2K3

2J

s2pKeffd3

15p

4
=

45Î3

1024p2 < 0.0077.

Thus we have found that the quantityVsmd, the summa-
tion of which overm allows one to find different essential
free energies, contains a very small numerical coefficientgc
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and very rapidly decays with the increase ofm. Accordingly,
the expressions in Eqs.s44d ands47d which include the sum-
mation of Vsmd starting fromm=1 will be determined en-
tirely by the first term in the sum. However, substitution of
Eq. s53d into Eq. s48d with subsequent replacement of the
summation by integration allows one to find the form of the
interaction of two domain walls form@1,

Fintsmd < −
gc

15

T2

J

Lx

m5 .

E. Numerical calculations

Note that the expression forVsmd, Eq. s53d, which we
have found in the framework of the continuous approxima-
tion is positive and increases with decrease ofm, that is
when one moves out of the region of the applicability of the
continuous approximation. Although it hardly can be ex-
pected that the more accurate calculation will lead to the
change of the sign ofVsmd, we have checked this form=1
by going beyond the limits of the continuous approximation.

The exact expression forVsmd given by Eqs.s45d and
s49d can be written as a sum over all possible pairs of tri-
angles belonging to two different stripes. Form=1 the first
term in this sum, that is the contribution which corresponds
to the pair of adjacent triangles, has the form

V0s1d =
4K3

2

T
ksun+2,m − un,md2l2ks¹m

+uds− ¹m
−udl. s54d

The averages which enter Eq.s54d are given by the integrals
over Brillouin zone,

ksun+2,m − un,md2l =E
−p

p E
−p

p dqdp

s2pd2

W1sq,pdT
L0sq,pd

,

ks¹m
+uds− ¹m

−udl =E
−p

p E
−p

p dqdp

s2pd2

W2sq,pdT
L0sq,pd

,

where

W1sq,pd = 2s1 − cos 2qd,

W2sq,pd = scosq − cospd2 − sin2 p,

L0sq,pd = 2K1s1 − cos 2qd + 4K2s1 − cosq cospd.

Numerical calculation of these integrals gives

ksun+2,m − un,md2l < 0.433
T

K2
,

ks¹m
+uds− ¹m

−udl < 0.0294
T

K2
,

which after substitution into Eq.s54d allows one to find that
V0s1d=g0T

2/J, whereg0<0.0018.
The addition to Eq.s54d of the analogous terms related to

the pairs of triangular plaquettes which have a common site

leads to the replacement ofg0 by g2<0.0032.0. The con-
tributions from more distant pairs of plaquettes are much
smaller and can be safely neglected. This result confirms the
positiveness ofVs1d. According to Eq.s44d, the positiveness
of Vsmd for all m ensures thatFanh

e .Fanh
a .

It follows from Eq. s47d that the value of the type II
domain wall free energy per unit length can be then rather
accurately estimated as

fDW
s0d = g2

T2

J
. s55d

In the analysis of the next sectionfDW
s0d sTd plays the role of

the fluctuation-induced effective energy of a domain wall.
The comparison of the free energies of anharmonic fluc-

tuations in the statessad and scd can be made following the
same approach, but turns out to be much more cumbersome
for two reasons. First, in order to reduce the Hamiltonians of
the harmonic fluctuations in these two states to the same
form one has to apply the gauge transformation introduced in
Sec. III B. Second, there is no complete cancellation of the
second term from Eq.s42d, which leads to the strong in-
crease of the number of terms one has to take into account in
the expressions for the free energies of fluctuations. A nu-
merical calculation shows that the free energy of anharmonic
fluctuations is lower for the statesad, which means that the
free energy of the type I domain wall shown in Fig. 3sbd is
also positive.

The numerical constantg1 characterizing this free energy
is equal to 0.0044 if one takes into account only the contri-
butions from the adjacent plaquettes, whereas when the con-
tributions from the pairs of plaquettes which have a common
site are also included, one gets the value which is very close
to g2,

g1 < 0.0033.

V. DISORDERING OF VORTEX PATTERN

A. An estimate for the phase transition temperature

The temperature of the phase transition associated with
the proliferation of domain walls and the disordering of the
periodic vortex pattern can be estimated by analyzing a more
complete expression for the domain wall free energy,
which in addition to the term induced by anharmonicities,
fDW

s0d sTd=gT2/J, should also include the entropic term related
to the formation of kinks,

fDWsTd = fDW
s0d sTd − nT exps− EK/Td,

whereEK ~J is the energy of a kink andn,1 is the density
sper unit lengthd of the positions on a domain wall where a
kink can exist. In the case of the exactly solvable anisotropic
Ising model35 an analogous estimate allows one to find the
transition temperature with the exponential accuracy.

The temperature of the phase transition associated with
the spontaneous creation of infinite domain walls,Tc, can be
then estimated from the conditionfDWsTcd=0, which can be
rewritten as
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Tc =
EK

lnfnTc/fDW
s0d sTcdg

. s56d

Equations56d shows thatTc is determined mainly byEK and
only logarithmically depends onfDW

s0d , that is ong.
Figure 6sad shows the structure of an elementary kink on

a type I domain wall separating two different versions of the
statesad. This is one of the simplest neutral pointlike excita-
tions possible in the system. It contains only two vortex clus-
ters of anomalous sizes, one with four positive vorticessin-
stead of threed and another with two, so there is no excess
vorticity associated with this defect. Note that any defect
with only one vortex cluster of anomalous size will be char-
acterized by a nonzero vorticity, so its energy will be loga-
rithmically divergent.

The distance between two neighboring positions the kink
shown in Fig. 6sad can occupy is equal to 2sin lattice units of
Td. However, the same domain wall allows also for the for-
mation of kinks of the opposite signsorientationd, which
means that the value ofn in Eq. s56d should be set equal to
one.

Numerical calculation of the kink energy has been per-
formed by minimizing the energy of a finite lattice cluster
around the kinkswith the size 4L34L, containingN=48L2

−10L+1 sites inside itd with the assumption that on all sites
outside of this area the values of the phases are exactly the
same as they would be if the kink was infinitely far. Numeri-
cal calculation ofEK for L=1,2,3 sL=3 corresponds to
N=403d and extrapolation of the result toL→` give

EK

J
= 0.1037 ± 0.0001. s57d

The simplest kink on a type II domain wall is also neutral,
but has a more complex structure. It contains four vortex
clusters of anomalous sizes, and, therefore, its energy is,
roughly speaking, two times larger then the energy of a kink
on a type I domain wall. This means that in the vicinity of
the phase transition type I domain walls play a relatively
more important role. Numerical solution of Eq.s56d for
EK /J=0.1037 andg=0.0033 gives

Tc/J < 0.010. s58d

B. Vortex pattern fluctuations in the low temperature
phase

At T,Tc all domain walls excited as thermal fluctuations
should have the form of closed loops. At temperatures well
belowTc the form of these loops will be strongly anisotropic.
At T!Tc a typical defect will be formed by two parallel
zero-energy domain walls separated by the minimal possible
distance.22 Accordingly, the free energy of such a stripe de-
fect can be written as

FSDsL,Td = 2E0 + 2fDW
s0d sTdL,

whereE0 is the energy which can be associated with each of
the two ends of stripe defect andL is its length. Since in the
considered problem the structure of the end point of a striped

defect is the same as the one of the kinkfsee Fig. 6sbdg, E0 is
very close toEK.

The probability of formation of stripe defects,PSDsLd, is,
naturally, determined by their free energies,

PSDsLd = expf− FSDsLd/Tg,

which allows one to estimater, the fraction of the total area
of the system covered by such defects, as

rsTd , F T

fDW
s0d sTdG2

expS−
2E0

T
D . s59d

By looking whenrsTd becomes of the order of 1, a criterium
is obtained which differs from Eq.s56d only by the replace-
ment EK →E0. SinceE0<EK, this gives an additional sup-
port for our estimate of the phase transition temperature.

However, in this approach it becomes more clear that the
estimate we have constructed is an estimate from below.
Since stripe defects are strongly anisotropic and can have
different orientations, they have to start crossing each other

FIG. 6. Pointlike defects with finite energies:sad a kink on a
type I domain wall,sbd an end point of a striped defect with the
minimal width, andscd an intersection of a striped defect with a
type I domain wall.
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while r is still much smaller than 1. An estimate shows that
the average distance between the centers of stripe defects
becomes comparable with their average length when
T< 2

3Tc. Since each of such crossings costs an additional
energy, this will decrease the rate at whichrsTd grows with
increasing temperaturefas well as the rate at whichfDWsTd
decreasesg.

The defect which is formed when a stripe defect crosses a
type I domain wall with different orientation is shown in Fig.
6scd. Like the two other types of local defects considered
above this defect is neutral and consists of two clusters of
anomalous sizessfour and twod, which suggests that its en-
ergy is also close toEK. Since no additional energy scale is
involved, one can hope that the effects related with such
crossings will lead only to the appearance of some numerical
factor scomparable with 1d in the right-hand side of Eq.s56d.

Note that one also cannot exclude a possibility that the
disordering of the vortex pattern is a multistage process and
takes place as a sequence of phase transition, the first of
which, atTc,0.01J, is related to the appearance of infinite
domain walls with only one orientation.

At T→0 the value ofr given by Eq.s59d exponentially
tends to zero, which means that with the decrease of tem-
perature the system becomes more and more ordered. Quite
remarkably, this is accompanied by the divergence of the
correlation radius of fluctuations,

rcsTd <
T

2fDWsTd
, s60d

which is determined by the average length of the defect. In
the low temperature limitrcsTd~1/T.

C. Finite-size effects

Thus we have found thatTc, the temperature of vortex-
pattern ordering in the fully frustratedXY model on a dice
lattice, can be expected to be of the order of 0.01J. It has to
be emphasized that atT&Tc the fluctuation-induced free en-
ergy of domain walls is extremely weak,fDW

s0d &10−4gJ,
whereg!0.01 is an additional small parameter calculated in
Sec. IV E.

The very low value of the ratiofDW
s0d /T at T&Tc leads to

the unusual prominence of the finite-size effects consisting of
the spontaneous formation of domain walls crossing the
whole system. If a sample has a form of a stripe with a finite
width, L, the probabilitysper unit lengthd to have a domain
wall crossing the whole system can be estimated as

psLd , expF−
fDWsTd

T
LG = expF−

L

2rcsTdG .

Vortex-pattern ordering, or, at least, any traces of such an
ordering can be expected to be observable only when the
average distance between such walls,rsLd=1/psLd ffor
L& rcsTd this quantity plays the role of the effective correla-
tion radius induced by the finite-size effectsg is much larger
then 1, which requires one to haveL@ rcsTd.

In typical systems with discrete degrees of freedom ana-
lyzed in statistical mechanicssthe simplest example being

the isotropic Ising modeld a twofold or a threefold decrease
of temperature with respect toTc is usually sufficient to ob-
tain rc,1, which allows one to observe the ordering even in
relatively small systems. However, in situations when a finite
free energy of domain walls arises only from the anharmonic
fluctuations,rcsTd diverges not only whenT→Tc, but also
whenT→0,36 and, therefore, the best conditions for the ob-
servation of vortex-pattern ordering in a finite system are
achieved at intermediate temperatures. The differentiation of
fDWsTd /T with respect toT shows that the minimum ofrcsTd
defined by Eq.s60d is achieved when

T =
EK

lnfnEK/fDW
s0d sTdg

. s61d

The numerical solution of Eq.s61d for the same values ofEK
andg, and substitution of the result into Eq.s60d, show that
the minimal value ofrc is achieved whenT<0.8Tc and is of
the order of 23104. Thus the observation of vortex-pattern
ordering requires the linear size of the system to be at least
comparable with 105.

Note that the finite-size effects discussed in this section
are related to the destruction of a genuine long-range order
and, therefore, have nothing to do with much more subtle
“intrinsic finite-size effects” in a finite system with irrational
frustration discussed in Ref. 44.

VI. DESTRUCTION OF PHASE COHERENCE

Up to now we have discussed only one phase transition
related to the disordering of the vortex pattern and the pro-
liferation of domain walls. However, the ground states of
uniformly frustratedXY models are characterized by a com-
bination of discrete and continuous degeneracies, which pro-
vides possibilities for the existence ofsat leastd two different
phase transitions.3 The second phase transition is related to
the vanishing of the helicity modulus,GsTd, describing the
rigidity of the system with respect to a phase twist. In terms
of a Josephson junction array this phase transition corre-
sponds to the destruction of superconductivity. It takes place
not necessarily at the same temperature as the vortex-pattern
disordering.

The interaction between the discrete and continuous de-
grees of freedom in uniformly frustratedXY models has a
nonperturbative nature and is related to the formation of frac-
tional vortices at corners and intersections of domain
walls.7–9 According to the general scheme proposed in Ref.
9, three scenarios are possible in a situation when the disor-
dering of a vortex pattern takes place as a single phase tran-
sition swhose temperature we denoteTcd and not as a se-
quence of phase transitions.37

First, the vanishing of the helicity modulus can take place
at T,Tc, if TV, the temperature of pair dissociation for or-
dinary sintegerd vortices, is lower thanTc. The phase transi-
tion at T=TV in that case has exactly the same nature as the
Berezinskii-Kosterlitz-Thouless transition39 in the conven-
tional XY model swithout frustrationd. Numerical
simulations,5,11 as well as analysis of the mutual influence
between vortices and kinks on domain walls,14 demonstrate
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that this scenario is realized in the fully frustratedXY models
on square and triangular lattices.

The vanishing of the helicity modulus can also take place
at T.Tc, but only if atT=Tc the logarithmical interaction of
fractional vortices is strong enough to keep them bound in
pairs. Note that atT,Tc the confinement of fractional vor-
tices is ensured by their linear interaction related to a finite
free energysper unit lengthd of the domain walls which are
connecting them. In such a case the loss of phase coherence
is related to the dissociation of pairs of logarithmically inter-
acting fractional vortices and can be expected to take place at
T=TFV.Tc, whereTFV is the solution of the equation,

T =
p

2
Q2GsTd, s62d

and Q,1 is the topological charge of the elementary frac-
tional vortex. Equations62d is nothing else but the generali-
zation of the Nelson-Kosterlitz universal relation40 for frac-
tional vortices.9 This scenario is realized in the
antiferromagneticXY model on akagomelattice, whereTc is
expected to be anomalously small,Tc/J,10−4,36 and also in
the uniformly frustratedXY model with f =1/3 on adice
lattice, in which the vortex pattern is disordered at any finite
temperature and becomes quasiordered only atT=0.41

The two transitions can be expected to coincide if at
T=Tc the value ofGsTd is sufficiently large to ensure that
integer vortices are bound in pairs, but is not large enough to
prevent from dissociation the pairs of fractional vortices. In
such a caseGsTd jumps to zero exactly atT=Tc, the ratio
T/GsTd at the transition point is not universal9 fsp /2dQ2

,T/GsTd,p /2g, and the transition is likely to be of the first
order.8,42 The results of numerical simulations suggest that
this scenario is quite possibly realized on square lattice at
f =2/5,43 as well as atf =1/8 andf =1/10.42

In the case of the fully frustratedXY model on a dice
lattice the effective value of the helicity modulussproperly
averaged over anglesd at T=0 is G0=s2/3d3/2J<0.54J, and,
therefore, atT=Tc!J the integer vortices are strongly bound
in pairs. It has been already mentioned in Sec. V that the
kinks on both types of zero-energy domain wallsfon the
background of statesadg are neutral. Therefore the mecha-
nism which forcesTV to be lower thanTc in the fully frus-
trated models on square and triangular lattices14 here most
probably does not work.

In the considered model the fractional vortices appear at
points where two type I zero-energy domain walls cross each
other. Figure 7 shows an example of such a crossing. Note
that after crossing one of the walls has to be transformed into
a type II domain wall. The energy of this state is above the
ground state energy because one of the vortex clusters con-
tains only two positive vortices instead of three. The accurate
summation of the nominal values of the variablesu jk along a
closed loop going around this cluster demonstrates the misfit
of p /4 with respect to what one could expect from counting
the number of positive and negative half-vortices inside this
loop. The value of the misfit is the same for all closed loops
surrounding the anomalous cluster and should be compen-
sated by a continuous rotation of the phase by the same angle

in the opposite direction. This means that the cluster consist-
ing of two positive vortices behaves itself as a fractional
vortex whose topological charge is equal to −1/8.

One also can construct an analogous intersection where
one of the clusters is formed by four positive vortices instead
of three. The topological charge of such a defect will be
equal to +1/8. It is clear that when the cluster of an anoma-
lous size consists of negative vorticessinstead of positived,
the sign of the topological charge is reversed. The topologi-
cal charges of more complex intersectionsscontaining, for
example, the clusters of five or more vortices or several clus-
ters of anomalous sizesd will all be multiples of 1/8. Note
that the excess vorticity which can be associated with a vor-
tex cluster depends not only on its size but also on the shape.
For example, when a cluster consists of three vortices, but
has the shape of a hexagon, the topological charge which has
to be associated with it is equal to ±3/8.

The only possibility to have domain walls crossings in an
equilibrium infinite system well below the temperature of
vortex-pattern ordering is related to crossing of stripe defects
discussed in Sec. V B. Figure 6scd shows an example of the
intersection of a stripe defect with a domain wall where the
two fractional vortices have the opposite topological charges,
which makes the energy of such an object finite. Although it
is possible also to construct an example in which the topo-
logical charges of the two intersections will be the same, the
total topological charge of any finite size defectsfor ex-
ample, formed by several intersecting stripe defectsd has to
be an integer.7,9 Therefore at low temperatures the fractional
vortices can be present only in the form of bound pairs,
whose size is restricted more by the available separations
between domain walls in stripe defects rather then by the
logarithmic interaction of these objectsswhich is 64 times
weaker than the interaction of ordinary vorticesd.

With increase of temperature the average separation be-
tween the domain walls forming a stripe defect increases,
which allows larger separations between the fractional vorti-
ces of opposite sign. Above the temperature of vortex-pattern
disordering, the restrictions for the distances between frac-
tional vortices related with the separations between domain
walls in stripe defects will no longer exist. It looks rather
likely9 that in such a situation one can consider fractional

FIG. 7. An example of a fractional vortex.
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vorticessat the scales that are large in comparison with the
correlation radiusd as really logarithmically interacting ob-
jects. The same approach may be also applicable to a finite
system atT,Tc if its linear size does not exceed the size-
dependent correlation radiusrcsLd introduced in Sec. V C. In
both cases one can speculate about the possibility of a phase
transition related with the unbinding of neutral pairs formed
by logarithmically interacting vortex clusters of anomalous
sizes.

Substitution ofQ=1/8 into Eq. s62d allows one to find
that the temperature of this phase transition can be estimated
as

TFV <
p

128
G0 =

p

96Î6
J < 0.013J.

This is an estimate from above which neglects the renormal-
ization of G by thermal fluctuations. Comparison with the
estimateTc*0.01J obtained in Sec. VI suggests that in the
fully frustratedXY model on an infinite dice lattice the de-
struction of phase coherence will be triggered by the disor-
dering of the vortex pattern, which can be expected to occur
at a temperature where the logarithmic interaction of frac-
tional vortices atTc is too weak to keep them bound in pairs.

On the other hand, in a situation when the size of the
system is insufficient to exclude the giant finite-size effects
leading to the disordering of the vortex pattern at any tem-
peraturessee Sec. V Cd, one can still discuss the possibility
of a phase transitionsslightly smeared by the finite-size ef-
fectsd, in which the loss of phase coherence will occur as
the result of the unbinding of fractional vortices at
T=TFV,0.01J. In numerical simulations this phase transi-
tion can be observed by analyzing if vortex clusters of
anomalous sizes are bound in neutral pairs or not. However,
at T,0.01J one should be specially attentive about checking
if the time of simulation is sufficient for the equilibration of
the vortex subsystem, which at such temperatures will re-
quire much longer times than the equilibration of the spin-
wave subsystem. It is not clear if in numerical simulations of
Ref. 15sdiscussed in more detail in Sec. VIIId this condition
was really satisfied.

VII. MAGNETIC EFFECTS

It has been already mentioned in the Introduction that the
main interest to the uniformly frustratedXY models has ap-
peared in relation to their application for the description of
Josephson junction arrays in external magnetic field. Since
we have found that in the case of the fully frustrated model
on a dice lattice the order-from-disorder mechanism for the
removal of an accidental degeneracy is extremely inefficient,
in a physical situation one should also take into account
other possible mechanisms. In the case of a proximity
coupled array, the most important of them is related to the
magnetic interactions of currents.25,26,45

When the proper magnetic fields of currents in the array
are taken into account, the Hamiltonian of the frustratedXY
model should be replaced46,47 by

H = − Jo
s jkd

cossu jk − ajkd + Emagn, s63d

whereu jk;wk−w j −Ajk includes only the contribution from
the external magnetic field, defined by Eq.s2d, whereas the
analogous contribution from the currents is denotedajk. The
second term in Eq.s63d,

Emagn=
1

2o
a,b

Lab
−1FaFb, s64d

is the energy of the current-inducedsscreeningd magnetic
fields expressed in terms of

Fa =
F0

2p
o
h

ajk, s65d

the magnetic fluxes of these fields through the plaquettes of
the arraysdenoted by Greek lettersd, Lab being the matrix of
mutual inductances48 between the plaquettes.

The values of the variablesajk should be found from the
minimization of H. The result of the variation of Eq.s63d
with respect toajk can be rewritten as

Fa = o
b

LabIb, s66d

whereIb is the so-called mesh current48,49 which can be as-
sociated with the plaquetteb. The currents in the junctions,

I jk = I0 sinsu jk − ajkd,

are given by the difference of mesh currents in the two
plaquettes,a jk anda jk8 , sharing the bonds jkd,

I jk = Ia jk
− Ia jk8

. s67d

The substitution of Eq.s66d into Eq. s64d allows one to re-
write it in the more familiar form as

Emagn=
1

2o
a,b

LabIaIb.

In the regime of weak screening one can assume that the
values of the currents are not affected by their magnetic
fields and calculateEmagn replacing I jk by I jk

s0d= I0 sinu jk.
Nonetheless, the calculation of the first term in Eq.s63d with
the same accuracy requires one to take into account its de-
pendence ofajk. The contribution to this term which is linear
in ajk has a form

− o
s jkd

I jk
s0dajk,

and with the help of Eqs.s64d–s67d can be shown to be equal
to −2Emagn, whereEmagnis calculated for the “bare” values of
currents,I jk

s0d. Therefore, in the regime of weak screening,
Hmagn, the total magnetic correction to the Hamiltonian of a
Josephson junction array is equal toEmagn, but has the oppo-
site sign,

Hmagn= − Emagn.

The comparison ofEmagn in different periodic states in a
fully frustrated superconducting wire network with the dice
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lattice geometry has been recently made in Ref. 26. Since in
terms of the gauge-invariant phase differencesu jk the struc-
ture of these states is in one-to-one correspondence with the
ground states of the fully frustratedXY model with the same
geometry, the same results are also applicable to an array
formed by weakly coupled superconducting islands. It fol-
lows from the results of Ref. 26 that in arrays the expression
for Emagn snormalized per a sixfold coordinated sited in the
regime of weak screening can be written as

Emagn=
e

3

J2

EF

, s68d

where

EF =
F0

2

4p2a

is the characteristic energy scale which depends ona, the
lattice constant of the array. The numerical coefficiente in
Eq. s68d is determined by the structure of the vortex pattern
in the considered ground state and can be expressed as a
linear combination of the coefficientsli .0 defining the mu-
tual inductances,Li ;−lia, between different pairs of
plaquettes on a dice lattice. Herei =1 corresponds to the
nearest neighbors,i =2 to the next-to-nearest neighbors, etc.

The main conclusion of Ref. 26 is that in the fully frus-
trated system with the dice lattice geometry the coefficiente
is the largest in the statescd. For example, the numerical
coefficient in the expression,

dHmagn= Hmagn
a − Hmagn

c = m
J2

EF

,

for the difference between the magnetic energies of the states
sad and scd,

m =
ec − ea

3
=

1

6
sl2 + 3l3 − l4 − 6l5 − 5l7

+ 3l8 + 4l10 − ¯ d < 0.17,

is positive.
For a=8 mm sRef. 31d EF<0.983104 K, which shows

that atT,J the differences between the magnetic energies
are extremely small,dHmagn/Tø10−4, and are even smaller
than the differences between the free energies of anharmonic
fluctuations. In this estimate we have assumedT&10 K.

It should be emphasized that in proximity coupled arrays
the coupling constantJ has a strong temperature dependence
in a wide interval of temperatures, so the decrease of the
dimensionless temperaturet=T/JsTd with the decrease of
real temperatureT is much more strongly influenced by the
growth ofJsTd than by the decrease ofT. Roughly speaking,
in the experiments of Ref. 31 the decrease ofT by 1 K cor-
responds to the decrease oft by one order of magnitude.

This suggests that the importance of magnetic effects rap-
idly grows with the decrease oft. Comparison ofdHmagn
with dFanh=gT2/J shows that the magnetic energy becomes
dominant when

t , tmagn= Sm

g

T

EF
D1/3

< 0.30,

where we have putT=5 K. Thus at t&0.1, where the
vortex-pattern ordering can be expected to occur, one can
take into account only the magnetic energies of different
statessor domain wallsd, completely neglecting the free en-
ergy of anharmonic fluctuations. Therefore the structure of
the periodic vortex pattern in the low temperature phase of a
proximity coupled array should be of the typescd.

The energy of domain walls separating different versions
of statescd from each other,EDW, will be close todHmagn,
which will make the vortex pattern more robust with respect
to thermal fluctuations in comparison with theXY model.
However, any quantitative conclusions about the temperature
of the phase transitionssd related to vortex-pattern disorder-
ing in this situation are impossible without the detailed
analysis of the energies and other properties of the topologi-
cal excitations in statescd fanalogous to the one performed in
Sec. V for statesadg, which goes beyond the limits of this
paper. Nonetheless, some increase of the region of stability
of the low-temperature phase with the ordered vortex pattern
is inevitable, which allows one to conclude that the scenario
in which the unbinding of fractional vortices with topologi-
cal charges ±1/8 takes place as an independent phase tran-
sition is impossible.

Inclusion of the magnetic interactions into analysis im-
proves also the situation with respect to the finite-size ef-
fects. ForEDW,J2/EF the probability to have a domain wall
crossing the whole systemsof the width Ld becomes negli-
gible for

L @ Lc ,
EF

T
t2,

which att!1 is a much more mild restriction than the one
obtained in Sec. V for theXY model.

On the other hand, it is known that the magnetic interac-
tions of currents, or, in other words, screening effects, lead to
the increase of barriers a vortex has to overcome when mov-
ing between the plaquettes of an array.49 Thus, although the
growth of screening effects with a decrease in temperature
improves the stability of a vortex-pattern ordering, it simul-
taneously leads to the further increase ofsalready exponen-
tially larged times required for the relaxation of the system to
equilibrium. This may be one of the reasons why the finite-
frequency experiments of Ref. 31 have not demonstrated any
signs of a phase transition atf =1/2.

It should also be noted that in the case when the loss of
phase coherence is related to dissociation of fractional-vortex
pairs, the universal relation50 for the value of the two-
dimensional magnetic penetration depth,51 L, at the transi-
tion temperature can be rewrittensin our notationd as

LsTFVd
a

=
Q2

8

EF

TFV
.

As a consequence, the smearing of the phase transition due
to the finiteness ofL in the case when it is related to unbind-
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ing of fractional vortices should be more pronounced then in
the case of integer vortices.

VIII. CONCLUSION

In the present work we have investigated the fully frus-
tratedXY model on a dice lattice and have demonstrated that
the energy of this system is minimized in the highly degen-
erate family of statessdescribed in Sec. II Cd, in which the
vortices of the same sign are grouped into clusters of three.
The accidental degeneracy of these states can be described in
terms of the formation of a network of intersecting zero-
energy domain walls,13 whereas the residual entropy related
to this degeneracy is proportional to the linear size of the
system, as in the case of a honeycomb lattice.9.

The central result of this paper consists of determining the
structure of the periodic vortex pattern which is selected at
low temperatures by thermal fluctuations. It is shown in Fig.
3sad. However, this effect is rather weak, being induced only
by the anharmonic fluctuations. As a consequence of a hid-
den gauge symmetry, the free energy of the harmonic fluc-
tuations turns out to be the same for all ground states. The
same conclusion is applicable also to quantum generaliza-
tions of the model both at a finite and at zero temperature,
when one should speak of zero-point fluctuations.

The destruction of the periodic vortex pattern with the
increase of temperature is related to the proliferation of do-
main walls. The dimensionless temperature,t=T/J, at which
the corresponding phase transition can be expected to take
place can be estimated astc,0.01, where one factor of 0.1
is related to the smallness of the energy of the particular
pointlike defects on domain walls, and the otherswhich is of
the logarithmic origind to the extreme smallness of the
fluctuation-induced free energy of zero-energy domains
walls. The analysis of possible scenarios suggests that the
loss of phase coherence in the considered system can be
expected to take place at the same temperature as the disor-
dering of the vortex pattern.

The extreme smallness of the fluctuation-induced free en-
ergy of domain walls will manifest itself also in the huge
prominence of the finite-size effects consisting of the appear-
ance of domain walls crossing the whole system and leading
to the disordering of the vortex pattern even att,tc. As a
consequence, even at the “optimal” temperature,t<0.8tc,
the linear size of the system required to observe the vortex-
pattern ordering should be much larger thanrc

min<23104.
However, in smaller systems one can still discuss a possibil-
ity for the observation of a phase transition related to the loss
of phase coherence and consisting of unbinding of pairs of
logarithmically interacting vortex clusters of anomalous
sizes, which can be expected to happen attFV,0.01.

Our conclusions are consistent with the results of the nu-
merical simulations of the same model by Cataudella and
Fazio15 who have investigated the temperatures down to
t=0.01 and have found no signs of vortex-pattern ordering.
The results presented in Sec. V demonstrate that even if the
lowest temperatures investigated in Ref. 15 were indeed be-
low tc, the size of the system was definitely not sufficient for
the observation of such an ordering. In the notation based on

counting only the sixfold coordinated sitessused in this
workd, the largest size of the system analyzed in Ref. 15
corresponds to 56342, whereas the majority of the data has
been taken at 24318. It seems rather likely that analogous
simulations of a 1053105 system, which may be required for
the observation of vortex-pattern ordering in the fully frus-
tratedXY model on a dice lattice, can become possible only
with the further development of computational abilities.

Another result of the numerical simulations of Ref. 15 is
related to the dynamical properties of the systemswhich
were not discussed in this paperd and consists of finding be-
low t* <0.06 the signs of a glassy behavior. Namely, the
relaxation of the total energy att,t* becomes logarithmic
in time sin contrast to the exponential relaxation att.t*d,
whereas the behavior of the autocorrelation function of the
variablesu jk demonstrates a dependence on the waiting time.

One can certainly make an attempt to relate this observa-
tion to the specific features of the considered system. For the
temperatures and system sizes analyzed in Ref. 15 one can
safely neglect the fluctuation-induced free energy of zero-
energy domain walls and treat them as objects with zero free
energy. It seems rather likely then that the typical state ob-
tained after cooling down the system from
t,1 to t!EK /J can be described as a network formed by
zero-energy domain walls, which contains a large number of
pointlike defects, such as kinks and intersections, which cost
an additional energy. We know that the intersections with
zero energy are also possiblefsee Fig. 3sfdg, but one can
expect that the majority of the intersections formed during
cooling down from a disordered state will not have the opti-
mal structure necessary for that.

The glassy behavior can be then expected from the neces-
sity of the disentanglement of this domain wall network with
the decrease of temperature. For different temperatures
abovetc, the equilibrium concentration of pointlike defects
should be different. However, in contrast to kinks on a do-
main wall whose number can be changed due to annihilation
of two kinks of opposite signsswhich may be a relatively
fast processd, to change the number of the intersections of
domain walls one has to change the number of these walls,
which will require much longer times than the annihilation of
kinks. In particular, it seems rather likely that the processes
related to the annihilation of zero-energy domain walls cross-
ing the whole system will be characterized by relaxation
times diverging with the system size, providing thus a source
for a genuine glasslike behavior.

On the other hand, even if the times characterizing the
relaxation of the vortex pattern are not divergent in the ther-
modynamic limit and are restricted only by the barriers
whose typical height remains of the order ofJ, this already
can be the source for a glassylike behaviorsassociated with a
wide distribution of such barriersd at t!1 in a wide interval
of times. For example, exps1/0.05d,109, whereas in Ref. 15
the anomalous relaxation has been studied only at much
shorter times. In such a case one can argue that the observa-
tion of a glassylike behavior in the consideredXY model is
possible due to a combination of three factors, namely,sid the
existence of zero-energy domain walls,sii d the special inef-
fectiveness of the order-from-disorder mechanism for the
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removal of an accidental degeneracy, andsiii d the anoma-
lously low transition temperaturestc,0.01d. However, the
choice between the two scenariossgenuine glass vs the dy-
namical freezing of vortex relaxationd should be made on the
basis of a much more detailed analysis of the domain-walls
disentanglement.

In the experimental situation, the magnetic interactions of
currents in a Josephson junction array will be of greater im-
portance for the stabilization of a particular vortex pattern
then the anharmonic fluctuations. This mechanism leads to
the selection of the pattern shown in Fig. 3scd and makes the

periodic vortex pattern less vulnerable with respect to fluc-
tuations.
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