PHYSICAL REVIEW B 78, 024206 (2008)

Universal and nonuniversal tails of distribution functions in the directed polymer
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The optimal-fluctuation approach is applied to study the most distant (nonuniversal) tails of the free-energy
distribution function P;(F) for an elastic string (of a large but finite length L) interacting with a quenched
random potential. A further modification of this approach is proposed which takes into account the renormal-
ization effects and allows one to study the closest (universal) parts of the tails. The problem is analyzed for
different dimensions of a space in which the polymer is imbedded. In terms of the stochastic growth problem,
the same distribution function describes the distribution of heights in the regime of a nonstationary growth in
the situation when an interface starts to grow from a flat configuration.
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I. INTRODUCTION

A large variety of physical systems can be described in
terms of an elastic string interacting with a quenched random
potential. The role of such a string can be played by a do-
main wall in a two-dimensional magnet, a vortex line in a
superconductor, a dislocation in a crystal, and so on; how-
ever following Ref. 1 the systems of such a kind are usually
discussed under the generic name of a directed polymer in a
random medium. The unfading interest to this problem is
additionally supported by its resemblance to more complex
systems with quenched disorder (e.g., spin glasses), as well
as by its close relation to the dynamics of a randomly stirred
fluid and to the problem of a stochastic growth (see Refs. 2
and 3 for reviews).

One of the main objects of interest in the directed polymer
problem is P;(F), the free-energy distribution function for
large polymer length L. In particular, the knowledge of this
distribution function allows one to make conclusions on the
distribution of displacements. The first important step in the
analysis of P;(F) was made twenty years ago by Kardar,*
who suggested that all moments of P;(F) can be found by
calculating the moments Z,=Z" of the distribution of the
partition function Z and proposed an asymptotically exact
method for the calculation of Z, in a (1+ 1)-dimensional sys-
tem (a string confined to a plane) with a S-correlated random
potential. However, soon after that Medina and Kardar® un-
derstood (see also Ref. 6) that the information provided by
the approach introduced in Ref. 4 is insufficient for finding
any of the moments of P, (F). However, it allows one to find’
the tail of P;(F) at large negative F (the left tail). In such a
situation the conclusions on the width of the distribution
function have to rely on the assumption that at large L it
acquires a universal form,

P,(FIF,)
P,(F)= o (1)
incorporating the dependence on all parameters through a
single characteristic free-energy scale F.(L)oL®, which
therefore can be extracted from the known form of the tail.
The form of Eq. (1) assumes that F, the free energy of a
directed polymer in a given realization of a disorder, is
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counted off from its average, F (L) or, more precisely, from

the linear in L contribution to F (that is, L lim; .[F(L)/L]).
The same convention is implied below.

Only recently it has been understood?® that the form of the
tail following from Zhang’s analysis’ is applicable for the
description only of the most distant part of the left tail and
therefore has no direct relation to the universal form of the
distribution function which is achieved in the limit of
L— . At large but finite L the form of P;(F) given by Eq.
(1) can be expected to be achieved only for not too large
fluctuations of F [that is, for |F|<F.(L) with F.(L)/F.(L)
tending to infinity with the increase of L], whereas the be-
havior of P;(F) at |F|> F.(L) remains nonuniversal and is
not obliged to have anything in common with P.(F/F.). In
particular, it can incorporate quite different characteristic
free-energy scales. Thus, the fact that Zhang’s approach’ re-
produces both the correct form of the left tail of P.(F/F.)
and the correct estimate of the universal free-energy scale
F.(L) (which is the only relevant free-energy scale inside the
universal region) is not more than a happy coincidence. In
contrast to that, the behavior of the right tail of P, (F) inside
the universal region is qualitatively different from its behav-
ior in the nonuniversal part of the tail.®

In this paper, the analysis of the universal and nonuniver-
sal tails of P;(F) developed in Ref. 8 is presented in more
detail and also is extended to the investigation of
(1+d)-dimensional systems, in which polymer’s displace-
ment can be treated as a d-dimensional vector. The paper is
organized as follows. In Sec. I we formulate the continuous
model which is traditionally applied for the description of the
directed polymer problem and briefly review its relation to
the Kardar-Parisi-Zhang (KPZ) model® of a stochastic
growth, as well as to the Burgers turbulence problem. Sec-
tion III provides a short introduction to the optimal-
fluctuation approach, which can be used for the description
of the most distant (nonuniversal) parts of the tails of P, (F).
In Ref. 10 an analogous approach has been used to investi-
gate the distribution of velocity and its derivatives in the
Burgers turbulence problem, which however required the au-
thors to consider optimal fluctuations with completely differ-
ent structures then studied here. In Sec. IV the optimal fluc-
tuation approach is applied for the analysis of the far-left tail
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of P;(F), and in Sec. V of the far-right tail. Our main atten-
tion is focused on the systems with a d-correlated random
potential; however for d=2 the problem with purely
o-functional correlations becomes ill-defined, so we also
consider the case when a random potential correlations can
be characterized by a finite correlation radius.

For finding the universal parts of both tails, one also has
to look for optimal fluctuations, but taking into account that
in this regime the parameters of the system have to be con-
sidered as scale dependent due to their renormalization by
fluctuations. This is done in Sec. VI. The validity of this
approach is confirmed by the consistency of its predictions
with the results of the exact solution'' of the
(1+1)-dimensional polynuclear growth (PNG) model, as
well as by obtaining identical estimates for F,(L) in the left
and right tails. Section VII is devoted to summarizing the
results and comparing them with some results of other au-
thors, whereas in Appendix A we discuss how some of the
results of this work can be derived in terms of the Kardar-
Zhang replica approach.*’

Our main attention throughout this work is focused on a
system with free initial condition, that is, we assume that
only one end of a string is fixed, whereas the other one is free
to fluctuate. In terms of the KPZ problem® the same distri-
bution function describes the distribution of heights in the
regime of a nonstationary growth in the situation when an
interface starts to grow from a flat configuration (L being the
total time of the growth). One only has to bear in mind that
the height (as defined in the standard form of the KPZ equa-
tion) and the free energy of the directed polymer problem
differ from each other by the sign. Therefore, what we call
here the left (right) tail of P,(F) in terms of the KPZ prob-
lem corresponds to the right (left) tail of the height distribu-
tion function. Finally, Appendix B is devoted to demonstrat-
ing that when both end points of a directed polymer are
fixed, the form of the left tail of P, (F) remains basically the
same as for free initial condition.

II. MODEL

We consider an elastic string in a (1+d)-dimensional
space interacting with a random potential V(z,x). The coor-
dinate along the average direction of the string is denoted ¢
for the reasons which will become evident few lines below.
Such a string can be described by the Hamiltonian,

H= J(:dz’{ﬂdz(:)]z " V[t’,x(t’)]}, 2)

where the first term describes the elastic energy and the sec-
ond one the interaction with a random potential. Note that
the form of the first term in Eq. (2) relies on the smallness of
the angle between the string and its preferred direction.

The partition function of a string which starts at =0 and
ends at the point (¢,x) is then given by the functional inte-
gral,
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+00 x(1)=x
dx’'z(0,x")

—o x(0)=x’

z(1,x) = Dx(t")exp(- HIT), (3)

where T is the temperature. Naturally, z(z,x) depends
on the initial condition at r=0. The fixed initial condition,
x(t=0)=x,, corresponds to z(0,x)=d8(x—x,), whereas the
free initial condition (which implies the absence of any re-
strictions on x at t=0) to

z(0,x) = const. (4)

Since Eq. (3) has exactly the same form as the Euclidian
functional integral describing the motion of a quantum par-
ticle whose mass is given by J in a time-dependent random
potential V(#,x) (with ¢ playing the role of imaginary time
and T of Plank’s constant %), the evolution of z(¢,x) with the
increase in ¢ has to be governed by the imaginary-time
Schrodinger equation,

dz

iz | T
_T&t_ _ZJV + V(2,x) |z(2,x). (5)

As a consequence of this, the evolution of the free energy
corresponding to z(z,x),

J(t.x) = =T In[z(1,x)], (6)
is governed'? by the KPZ equation,’
af 1
=+ —(Vf)? = V= 7
o Ty VTV = V), )

with the inverted sign of f, where ¢ plays the role of time and
v=T/2J of viscosity. On the other hand, the derivation of
Eq. (7) with respect to x allows one to establish the
equivalence'? between the directed polymer problem and the
Burgers equation'® with random potential force,

du,,

1
— +u,Vuy — vVu, = -V, V(t,x), 8
ot UpValp = VYV U, J a ( X) ()

where the vector

%) = SV ©)

plays the role of velocity. Note that in terms of the KPZ
problem the free initial condition (4) corresponds to starting
the growth from a flat interface, f(0,x)=const, and in terms
of the Burgers problem to starting the evolution from a liquid
at rest, u(0,x)=0.

To simplify an analytical treatment, the statistic of a ran-
dom potential is usually assumed to be Gaussian with

V(t,x)=0, V(x)V(iH',x)=68t-t)Ux-x"), (10)

where an overbar denotes the average with respect to disor-
der. Our main attention below is focused on the case of
purely S-functional correlations, U(x)=U,d(x). However, for
d=2 the problem with such a form of correlations is ill-
defined and needs a regularization, so we also consider the
case when U(x) can be characterized by a finite correlation
radius & On the other hand, we always assume that the cor-
relations in the ¢ direction are J-functional because in almost
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all situations considered below the finiteness of the correla-
tion radius in the ¢ direction can be ignored as soon as it is
small in comparison with the total length of a string.

III. OPTIMAL-FLUCTUATION APPROACH

When the distribution of V(z,x) is Gaussian and satisfies
Egs. (10), the probability of any realization of V(¢,x) is pro-
portional to exp[—S{V}], where the action S{V} is given by
the functional

L
S{v}:%f dtffdxdx’v(t,x)U—l(x—x’)V(t,X’)-
0
(11)

Here U~!(x) denotes the function whose convolution with
U(x) is equal to &(x). Accordingly, the probability of any
time evolution of f(z,x) is determined by the action S{f},
which is obtained by replacing V(z,x) in Eq. (11) by the
left-hand side of the KPZ equation (7).

To find the most optimal fluctuation having the largest
probability (in literature it is often called “instanton”), one
has to minimize S{f} for the given boundary conditions at
t=0 and r=L. A convenient way to perform such a minimi-
zation consists in replacing S{f} by

S }—JLd jd[if LV2 V2}
{foud = ) t X &t+2j( )7 = vV |ulr.x)

—%ffdxdx’,u(t,x)U(x—x’),u(t,x’)}, (12)

where w(z,x) is an auxiliary field with respect to which
S{f, u} also has to be extremized. Variation of Eq. (12) with
respect to w(z,x) reproduces the KPZ equation (7) with

V(t,x)=fdx’U(x—x’),u,(t,x’), (13)

whereas its variation with respect to f(z,x) leads to
Auldt +div(aw) + V=0, (14)

where u(z,x)=Vf(z,x)/J is the “velocity” entering the Bur-
gers equation (8). The form of Eq. (14) implies that the in-
tegral of u(z,x) over whole space is a conserved quantity,
whereas substitution of Eq. (13) into Eq. (11) shows that in
terms of w(z,x) the action can be rewritten as

L
S{,u}:%f dtffdxdx’,u(t,x)U(x—x’),u(t,x’).
0

(15)

In a system with S-functional correlations, U(x)=U,d(x), V
and u differ from each other only by a constant factor U,
and accordingly, Eq. (14) can be replaced by

VIt + div(uV) + vV2V=0. (16)

If the beginning of a polymer (at =0) is not fastened to a
particular point and is free to fluctuate, the initial condition
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for the partition function z(z,x) has to be chosen in the form
z(0,x)=const. In such a case to find the tails of P;(F), one
has to find the solution of Egs. (7) and (14) which satisfies
the initial condition

f(0,x) =0, (17)
and the final condition
f(L,0)=F, (18)

where for the left tail <0 and for the right tail F>0. Al-
ternatively, condition (18) can be imposed by the inclusion of
the S-functional factor,

fd)\ exp(iN[f(L,x=0) - F]), (19)

into the functional integral defining the probability of a fluc-
tuation. In such a case condition (18) for f(L,x) should be
replaced by the condition for w(L,x),

p(L.X) = o d(x), (20)

where, however, the value of wg> A\ has to be chosen to
satisfy Eq. (18).

IV. FAR-LEFT TAIL

It turns out that in the case of the left tail the solution of
Egs. (7) and (14) which satisfies boundary conditions (17)
and (18) can be constructed on the basis of the solution of
these equations in which the potential V and all derivatives
of f do not depend on ¢, which means that the time depen-
dence of f(z,x) is decoupled from its spacial dependence and
is as trivial as possible,

fle.x)=E(t—1)) + f(x), (21)

where #;=const and E=const<<0. Below we for brevity call
such solutions stationary.
For f(z,x) of form (21) the replacement

f(x)=—=T1In ¥(x) (22)
transforms the KPZ equation (7) into a stationary
Schrodinger equation,

EV=HY, (23)

for a single-particle quantum-mechanical problem defined by
the Hamiltonian

. T,
H=-—V>+V(x), 24
7t (x) (24)

where J plays the role of mass and 7 of Plank’s constant 7
[compare with Eq. (5)]. On the other hand, when both
u=—(7T/J)VV¥/¥ and p do not depend on 7, Eq. (14) is
automatically fulfilled as soon as

p(x) o W2(x), (25)

which implies
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V(x):—Aj dx'U(x - x")P3(x'), (26)

where A is an arbitrary constant. Substitution of Eq. (26) into
Eq. (23) allows one to replace them by a single nonlinear
Schrodinger equation,

72 +°°
EV=- Q_JVZ\P - A‘If(x)f dx'U(x - x")W2(x').

Equation (26) has been derived by Halperin and Lax'#
when looking for the optimal fluctuation of the potential
V(x), which for the given value of the ground-state energy
E<0 of the quantum-mechanical Hamiltonian (24) mini-
mizes the functional

s{V}= %J f dxdx'V(x)U'(x - x")V(x'), (27)

determining the probability of V(x) (or, equivalently, mini-
mizes E for the given value of s{V}). Apparently, in terms of
our problem s{V} is related to the action S{V} defined by
Eq. (11) as S=Ls. In the case of S-functional correlations,
U(x)=U,8(x), and t-independent potential V(x), functional
(11) is reduced to

S{v} = 2sz0 f dxV*(x). (28)

A. é-functional correlations, d=1

In a 1+ 1-dimensional system with a d-correlated random
potential, U(x)=U,8(x), the localized solution of Egs. (23)
and (26) (the soliton) exists for any E<0 and can be found
exactly,'

_ 2E 1/2 1
V) = (AU0> cosh(x/A)’ (29)
2F
V(x) = cosi’(w/d)’ (30)

where the length scale

T

" o

can be called soliton width. This allows one to conclude that
the stationary solution of Egs. (7) and (16) is given by Eq.
(30) and

Ftx)=E(t—1)+T ln(2 coshi), (32)

which follows from the substitution of Eq. (29) into Egs.
(21) and (22). Note that in Eq. (32) the constant ¢, has been
redefined in order to absorb A.

Differentiation of Eq. (32) with respect to x gives a sta-
tionary profile of u(x),
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a) u(x)l

b) f(x)

\/

FIG. 1. The spatial dependence of u and f in the stationary
solution of Egs. (7) and (16).

x
=p tanh—, 33
u(x) =v tan A (33)

schematically shown in Fig. 1(a). Here
v=TIJA (34)

is the velocity of the outward flow created by the forces
acting inside the soliton. The profile (33) up to a sign coin-
cides with the one in a stationary shock wave with the same
amplitude v. The solitons of such a kind (both stationary and
moving) have been discussed in a number of works by
Fogedby."”

The stationary profile of f described by Eq. (32) is sche-
matically shown in Fig. 1(b). With the increase in time it is
moving downward as a whole with a constant velocity
df! dt=E. Away from the soliton’s core, that is, at |x|> A, the
dependence described by Eq. (32) can be approximated as

f(t.x) = E(t — 1;) + (= 2JE) "] (35)

Since Eq. (35) describes a solution of the noiseless KPZ
equation, its form does not depend on the form (or ampli-
tude) of the random potential correlator U(x).

The stationary solution minimizes the action for the given
negative value of Jf/dt=E. Therefore, it allows one to find
the optimal value of S in situations when it is not influenced
by the initial condition. Substitution of Eq. (30) into Eq. (28)
then gives

say=2-TL
T 3UAY

(36)

Apparently, the condition f(L,0)-f(0,0)=F is fulfilled
when E=F/L, which corresponds to

T2
- L
2JA?

F= (37)

and
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a) u(x)

<=

b)  f(x)

FIG. 2. The spatial dependence of u and f in the solution of Egs.
(7) and (16) corresponding to the left tail of P;(F). The arrows
show the directions of motion of the two shock waves.

S(F)=——-"—. (38)

However, the real optimal fluctuation also has to respect the
initial condition and it is clear that the spacial dependence of
fin Eq. (32) in no way resembles the initial condition (17).
In terms of the quantum-mechanical problem with time-
independent potential V(x), it is clear that the applicability of
the relation F= EL requires to have (8E)L>T, where SE is
the energy gap separating the ground state of the Hamil-
tonian (24) from the first excited state. Since in potential (30)
there exists only one bound level with a negative energy,'®
whereas excited states can have any non-negative energy,
this condition is equivalent to —F'>T.

For constructing a nonstationary solution which elimi-
nates the inconsistency between the forms of the stationary
solution and of the initial condition (without increasing the
action), one has to complement the soliton shown in Fig. 1(a)
by two traveling shock waves [as shown in Fig. 2(a)], whose
existence does not require any additional pumping. Both
these shock waves will be moving outwards with velocity
v/2. Their presence will change the profile of f(¢,x) to the
one shown in Fig. 2(b) so that f(x) will be given by Eq. (32)
only in the interval where f(7,x) <0, whereas outside of this
region it will coincide with the initial condition (17) (with a
smooth crossover between the two solutions). This means
that if a potential localized in the vicinity of x=0 is switched
on at =0, its influence on f(7,x) at t>0 extends only to a
finite (but growing with ) region, which is perfectly logical.

In such a situation the constant ¢, in Eq. (32) [or in Eq.
(35)] will have the meaning of an effective time required for
the formation of the nonstationary solution shown in Fig. 2.
At the initial stage, that is, at r=<t, the spacial distribution of
V(x) will substantially differ from the one given by Eq. (30)
The value of #; can be estimated from the comparison of the
soliton width A=2wv/v with the velocity v of the flow it
creates, which gives ¢, ~ v/v>. This allows one to expect that
for L>t, the main contribution to the action is coming from
the region in ¢ where Eq. (30) gives a sufficiently accurate
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description of the solution, and therefore the value of S(F) is
given by Eq. (38). In terms of F the constraint L> ¢, corre-
sponds to the condition —F>T (which was already derived
above in different terms).

The same condition allows us to neglect the final stage of
the optimal-fluctuation evolution. At this stage the potential
has to shrink from the form given by Eq. (30) to a é-function
as suggested by Eq. (20). Simultaneously, the downward tip
of f(x) has to change its shape from rounded to more sharp.
The decrease in f(x=0) related to this process can be ex-
pected to be comparable with the change in f induced by the
rounding of the tip, which according to Eq. (32) is of the
order of 7" and therefore for —F>T can be ignored.

Note that the same answer for S(F), Eq. (38), can be also
obtained in the framework of the Kardar-Zhang replica ap-
proach based on mapping a system to a set of interacting
bosons and keeping only the ground-state contribution to the
partition function of these bosons (see Appendix A for more
details). In Appendix B we demonstrate that the change in
the initial condition from free to fixed does not change the
form of the main contribution to S(F). The same conclusion
is even more easily attained in terms of the replica approach
(see Appendix A).

In the remaining part of this section, we analyze the sys-
tems with an arbitrary dimension and/or finite-range correla-
tions assuming that the main features of the optimal fluctua-
tion determining the far-left tail are the same. Namely, we
expect that in a growing region around x=0, the solution is
close to the stationary solution, whereas outside of this re-
gion it is close to the initial condition f(r,x)=0, the cross-
over between the two regions being described by a corre-
sponding solution of the noiseless KPZ equation. In such a
situation the action of the optimal fluctuation is determined
by the form of the stationary solution.

B. Generalization to d #1

If the dimension of the transverse space d is not equal to
1, the joint solution of Egs. (23) and (26), that is, the wave-
function W(x) which minimizes the sum of a positive kinetic
energy,

- f d'x|VW¥ (x)|?
=——, (39)
J d 2
d'x|¥ (x)|
and a negative potential energy,
Jdde(x)|‘lf(x)|2
V= , (40)
f d'x|W (x)[*

for a given value of the functional S{V} defined by Eq. (28),
cannot be found exactly. However, in a situation when this
wave function and, therefore, the potential V(x)—U,W?(x)
are well localized at some length scale A, an estimate for A
and a qualitative relation between S and F can be obtained
without finding the exact form of W(x).
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When W(x) can be characterized by a single relevant
length scale A, one has

T2

KA) ~—., 41
@)~ 5 @)
whereas the absolute value of V~ V(0) at a given S can be

estimated with the help of Eq. (28), which gives

L
S~ —AH7, (42)
Uy
and therefore,
SUO> 1/2
A)~-|— 4
V(A) ( A (43)

For 0<d <4 the sum K(A)+V(A) has a minimum with re-
spect to A when K(A) ~-V(A) and therefore both K and -V
have to be of the same order as —E=—F/L.

Substitution of V~ F/L into Eq. (42) allows one to re-
write this relation as

AYF?

S .
UpL

(44)

On the other hand, an estimate for A in terms of F can be
obtained from the relation IC~—E, which gives

T JL 1/2

AF)~—| —| . 45

(")~ J{_ F} (45)

After that to obtain an estimate for S(F) one needs only to
substitute Eq. (45) into Eq. (44), which leads to

Td(_ F)2—d/2
U()]d/ZLl—d/Z :

Naturally, for d=1 Eq. (46) is consistent with Eq. (38) de-
rived in Sec. IV A on the basis of the exact solution of Egs.
(23) and (26).

For d>4 the sum of C(A) and V(A) at a given S is not
bounded from below and tends to — when A — 0. Accord-
ingly, for any F <0 it becomes possible to find a stationary
fluctuation with an arbitrary low action, so the method of
optimal fluctuation is no longer applicable. However, it turns
out that the range of the applicability of Eq. (46) is even
more narrow than the interval 0 <d <4, where the action of
stationary fluctuations has a well-defined positive minimum.

The point is that L enters Eq. (46) as the total time of the
development of the optimal fluctuation of f(¢,x). From this it
is clear that Eq. (46) can be expected to be valid only if S
decreases with the increase in L, which forces the time of the
development of the optimal fluctuation to coincide with L. In
the opposite case (when S decreases with the decrease in L)
there appears a possibility to decrease the action of the fluc-
tuation we are considering by making the time of its devel-
opment smaller than L. Namely, if one makes in Eq. (44) a
replacement

S(F) ~ (46)

L=vyL A= yA (47)

conserving relation (45), this leads to S= 9/2S. Therefore,
for d>2 a consistent decrease in the size of the fluctuation
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and in the time of its development allow one to make S(F)
arbitrarily small by choosing a sufficiently small vy. This sug-
gests that the result (46) can be expected to be applicable
only at 0<d<2, whereas at d>2 the optimal fluctuation
corresponding to the most distant part of the left tail has to
be localized at small scales and its form has to be determined
by the form of a cutoff. Without a cutoff the problem with
d=2 and S-functional correlations is ill-defined.

Note that at d=2, the problem with S-functional correla-
tions is ill-defined also for another reason. Namely, at d=2
the perturbative corrections to the viscosity v and other quan-
tities acquire ultraviolet divergencies which at d<<2 are ab-
sent. Apparently, this is not a coincidence but another mani-
festation of the same phenomenon. Therefore, for d=2 some
ultraviolet cutoff must be introduced into the problem. One
of the most natural ways to do it consists in assuming that
the correlations of a random potential are characterized by a
finite correlation radius.

C. Finite-range correlations

When random potential correlator U(x) [which we as-
sume to be spherically symmetric, U(x)= U(|x|)] is charac-
terized by a finite correlation radius &, the stationary solution
of Egs. (7) and (14) cannot be found exactly even at d=1.
However, it is clear from the form of Eq. (13) relating V and
w1 that when the soliton width A is much larger than &, the
actual solution has to be rather close to the solution for
£=0, the same being true also for the value of S(F). It fol-
lows from Eq. (45) that in terms of F the condition A> ¢
corresponds to

L
Jg

It turns out that for the opposite relation between the pa-
rameters, —F > F,, the stationary solution of Egs. (7) and
(14) also can be found rather accurately. As it is shown be-
low, in such a case u is localized in a region which is much
narrower than &, whereas both f and V change at the scales of
the order of £ In particular, it follows from Eq. (13) that in

such a situation the spacial dependence of the potential V(x)
just repeats that of U(x),

V(x) = - U(x)e, (49)

whereas the amplitude of V(x) is determined by

e=- f dxu(x), (50)

the overall strength of the negative potential source u(x).

For —F> F the viscous term in Eq. (7) can be neglected,
which immediately gives that in the spherically symmetric
stationary solution,

aflot =~ - U(0)e (51)
and

2
(g—{) =2J[U0) - U(r)]e, (52)

where r=|x| so that

024206-6



UNIVERSAL AND NONUNIVERSAL TAILS OF...

o
f(x)=/(0)+ \"ZJSJ dryU(0) - U(r). (53)

0

In terms of the Schrodinger equation (23) the neglect of the
viscous term in the stationary KPZ equation corresponds to
nothing else but using the semiclassical approximation for
the calculation of the ground-state wave function.

Substitution of W(x)=exp[—f(x)/T] with f(x) given by
Eq. (53) into Eq. (25) demonstrates that at |x| <¢,

X—z} , (54)

where A, the width of the region where the potential source

u(x) is localized, is given by
1/4 1/4
F
~ | =£ 55
[~ (2] e

T72U(0)

AlR) = [ —4U,(0)JE

When deriving this estimate we have replaced —-U,.(0) by
U(0)/& and E by F/L. The result shows that the assumption
A(F) < ¢, which has been used above to obtain Eq. (49), is
indeed self-consistent as soon as —F> F.

Substitution of Eq. (49) into Eq. (15) reduces the expres-
sion for the action to a very simple form,

_UO), , LE*
S= 5 Le _ZU(())’ (56)

which is easily recognizable to those familiar with applica-
tion of the optimal-fluctuation approach to a quantum-
mechanical problem with finite-range correlations of a ran-
dom potential'” and after substitution of E=F/L gives

2

S(F) = (57)

20(0)L°

The same temperature-independent answer can be also repro-
duced in terms of the Kardar-Zhang replica approach (see
Appendix A).

Thus we have demonstrated that for £> 0 the most distant
part of the left tail is Gaussian independently of the dimen-
sion. Since the width of the region where wu is localized
grows with the decrease in —F, a crossover to some other
regime must occur when this width becomes comparable
with &. In particular, for d <2 and ¢ <<x, the dependence of S
on F at —-F<F; has to be described by Eq. (46) with a
subsequent crossover to the universal regime discussed in
Sec. VI B. Naturally, the increase in & (or d) leads to shrink-
ing and subsequent vanishing of the region where S(F) can
be described by Eq. (46). On the other hand, when £ is taken
to zero F; goes to infinity, which leads to the disappearance
of the region with Gaussian behavior.

D. Boundary from below

It is worthwhile to emphasize that expression (57) gives
an exact boundary from below for the value of S(F) in the
optimal fluctuation. This is so because the potential of the
form
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U(x)
V —V(x=0 58
(x) = 0(0) (x=0) (58)
minimizes functional (27) for the given value of V(x=0),
from where

1 (" )
S(F) = mjo dfv(t,0)]-. (59)

On the other hand, in a growing fluctuation of f(¢,x) which
has a spherically symmetric shape and an extremum at
x=0, the absolute value of Jf(¢,0)/dr is bounded from above
by |V(z,0)| because at the point of extremum the second term
in the left-hand side of the KPZ equation (7) vanishes,
whereas the third term, —szf, has to have the same sign as
df(¢,0)/dr. This allows one to conclude that

Jf(r,0) F?
S(E) = 2U(0)f [ ] =

Apparently, this inequality is reduced to equality only if (i)
V(t,x) is of form (58), (ii) the viscous term in the KPZ
equation can be neglected, and (iii) df(z,0)/dt does not de-
pend on time. Since in the negative fluctuation of f consid-
ered in Sec. IV C all these conditions are satisfied rather
accurately, the action of this fluctuation is approximately
equal to the boundary from below given by Eq. (60).

Note that the argument leading to the derivation of Eq.
(60) is valid for both signs of F. Therefore inequality (60)
has to be satisfied also in the far-right tail.

V. FAR-RIGHT TAIL

Our analysis has established that the optimal fluctuation
corresponding to the left tail of P;(F) has a very special
shape which can be characterized by two different scales.
Namely, the size of the area where the potential V is local-
ized, A(F), is much smaller then the total size of the fluctua-

tion A(F)~ (=FL/J)"2, that is, the width of the area where f
and u essentially deviate from zero. Apparently this property
is closely related to the fact that inside a growing negative
fluctuation of f the terms df/dt and (1/2J)(V£)? in the func-
tional,

2
S{f}:Z—UO dtfdx[—+—(Vf)2 v, (61)

defining the probability of a fluctuation in a system with a
S-correlated potential have to be of the opposite signs. This
provides a possibility for their mutual compensation in al-
most the whole volume of the fluctuation. It is clear that in
the case of the right tail such a cancellation is impossible
because in the substantial part of the optimal fluctuation
df/ dt has to be of the same sign as (1/2J)(Vf)%. As a conse-
quence, the optimal fluctuation corresponding to the right tail
must have a shape which can be characterized by a single
relevant length scale, A, (F).

This length scale can be estimated from the comparison of
afl gt~ F/L with (1/2J)(Vf)>~F?/JA%, which shows that
A, has to be of the same order as the total size of the optimal
fluctuation with F<<0,
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1/2
AL(F) ~ B F) ~ <L7F> . 62)

Note that for A,(F) given by Eq. (62) the viscous term in the
integrand of functional (61) can be neglected if F is large
enough. This is precisely the reason why an estimate for A,
can be obtained by matching the two other terms in
this integrand. A  comparison of  PV2f~vF/A2
with (1/2J)(Vf)?~F?/JA? shows that the condition which
allows one to neglect the viscous term can be written as
F>2Jv=T. Apparently this constraint is automatically ful-
filled as soon as one considers the most distant part of the
tail.
Substitution of Eq. (62) into the relation

LAY F\?
S~ U+<Z> ’ (63)
0

following from the assumption that A,(F) is the only rel-
evant length scale in the problem gives then an estimate for
the action determining the form of the far-right tail of P, (F),

2+d/2

S(F) ~ Uojd/le—d/z’

(64)
which naturally is independent of temperature. On a more
formal level, the same relation can be obtained as a varia-
tional estimate from above. If one assumes, for example, that

ﬁ)
— 65
2 (65)
and substitutes Eq. (65) into Eq. (61), then for 0<d <4 the
result of this substitution S,,.(A,) (which for F>T is insen-
sitive to the presence of the viscous term in the integrand)
has a minimum with respect to the variational parameter A,.
This minimum is situated at A,(F) satisfying relation (62),
whereas the value of S,,[A,(F)] satisfies relation (64).

The important difference between the far-left and far-right
tails is that in the far-right tail, the width of the region where
the fluctuation of a random potential is localized grows with
the increase in |F|. In such a situation one can expect that the
shape of the optimal fluctuation in the most distant part of
the tail at finite & will be the same as for a &-correlated
potential. This requires the fulfillment of the condition
A,> ¢ that is, F>J&/L. Therefore, for a given & and suf-
ficiently large L the region of the applicability of Eq. (64)
will be extended to the whole nonuniversal part of the right
tail.

Although the minimum of S,,(A,) with respect to A,
exists for any d in the interval 0 <d <4, it follows from the
form of Eq. (64) that this equation can be expected to be
directly applicable only at d <2, exactly like in the case of
the analogous expression for the far-left tail, Eq. (46). For
d>2 Eq. (64) (where L enters as the total time of the devel-
opment of the fluctuation) predicts that the action can be
decreased by making the time of the development of this
fluctuation much smaller than L. According to Eq. (62) this
will be accompanied by the decrease in the size of the fluc-
tuation. This suggests that at d>2 the optimal fluctuation
must have a different structure, which has to be sensitive to

.mm=%a{—
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the form of a random potential correlator at small lengths.
If the first factor in the right-hand side of Eq. (65) is
replaced by

F sinh(#/L.,)
sinh(L/L,) ’

which allows one to vary not only the characteristic size of a
fluctuation A, but also the time of its development L,, then
for U(x) = exp(—x2/2&%) and d>2 the minimum of the action
is achieved at A, ~ £ and L, ~J&/F, which corresponds to

gd—Z F3
Uy

Note that at d=2, the estimates given by Egs. (64) and (66)
coincide with each other. Naturally, at the marginal dimen-
sion of d=2 (where algebraic divergences are replaced by
logarithmic) some logarithmic factors may appear in the ex-
pression for the action.

S(F) ~ (66)

VI. MODIFICATION OF TAILS BY THE
RENORMALIZATION EFFECTS

In terms of the Burgers equation parameters (the viscosity
v=T/2J and the pumping force intensity D=U,/2J%), Eq.
(46) can be rewritten as

A= 2-d12
S(F) ~ 5%. (67)

This estimate has been derived at d<<2 and £=0 and is ap-
plicable also at £>0 as soon as ¢<A. However, from the
nature of the optimal-fluctuation approach, it is clear that the
range of the applicability of Eq. (67) is restricted also from
the other side because in order to disregard the renormaliza-
tion of any parameters by the nonlinearity the soliton has to
be sufficiently narrow: A<x,, where x, is defined by the
relation
3 3
LA (68)
D JU,
At any d # 2 x, is the only parameter with the dimension of
x which can be constructed from 7, J, and U,. In particular,
in the case of d<<2 and small £ we are discussing now, x is
the length scale at which the perturbative corrections to v
and D become comparable with the bare values of these
parameters.

Thus, at A > x, the renormalization effects become impor-
tant. In such a regime the probability of a large negative
fluctuation of F is determined not by a single fluctuation (and
small deviations from it) but by a relatively wide class of
fluctuations, the summation over which can be taken into
account by analyzing an optimal fluctuation in a system with
renormalized parameters. Since in all the cases we consider
the optimal fluctuations are quasistationary (see below) and
well localized at a particular length scale, this can be done by
replacing all parameters in Eq. (67) by their effective values
at the corresponding length scale and zero frequency.® How-
ever, it is well known that only v and D are subject to renor-
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malization, whereas the amplitude of the nonlinear term in
the KPZ equation (7) (and, therefore, the coefficient J) can-
not be renormalized as a consequence of the Galilean
invariance.'®

From the continuity it is clear that when the instanton is
not too narrow, the approach relying on using Eq. (67) with
renormalized parameters can be also expected to work even
at d=2 [where Eq. (67) has no region of the direct applica-
bility] as soon as the parameters of the system correspond to
the same phase as at d<<2 [namely, the strong-coupling
phase in which the fluctuations of f(z,x) in a stationary situ-
ation are divergent, see Eq. (69) below]. At d>2 this re-
quires to have xy/ &> k(d), that is, the temperature 7 should
be lower then some critical value T.(d),!” which tends to
infinity when d—2+0. In the weak-coupling phase, that is,
at T>T.(d), typical fluctuations of f(¢,x) in the stationary
situation can be described by neglecting the nonlinear term
in the KPZ equation (7). However, the form of the most
distant parts of the tails of P;(F) is insensitive to the relation
between T and T,.(d) and in both phases has to be given by
Egs. (57) and (66). To describe how the renormalization ef-
fects change the shape of the tails of P;(F) in the regime
when they are important (which corresponds to the universal
parts of the tails in the strong-coupling phase), we first have
to review some known properties of the stationary solution
of the KPZ model in the strong-coupling regime.

A. Stationary solution of the KPZ model

In a stationary situation the divergence of fluctuations in
the strong-coupling phase of a KPZ system is algebraic.
Their behavior at large scales in space-time can be described
by two fundamental exponents,'2

=]

Lf(,x) = f(e,x")]?) o [x - X'P’%’(m) . (69)

Here y= x(d) is the roughening exponent characterizing the
equal-time interface fluctuations, z=2z(d) is the dynamic ex-
ponent describing the scaling of the relaxation time with the
length-scale, whereas the function g(a) has a finite limit at
a—0 and diverges as a?X* when a— . It is well known'®
that the existence of the Galilean invariance imposes

7+ x=2. (70)

At d=1 the value of the exponent y=1/2 is known exactly
because the equal-time correlator of f(¢,x) in a system with
o-functional correlations of a random potential has to be ex-
actly the same as in the absence of the nonlinearity.!> This
property is a consequence of the fluctuation-dissipation
theorem,>! which is obeyed by Eq. (7) only at d=1. At
d#1 the values of the exponents z and y are known only
from approximate or numerical calculations. In terms of the
directed polymer problem the dependence (69) corresponds
to

([x(0) = x(t") Py os (1= 1), (71)

which shows that {=1/z plays the role of the roughening
exponent for the transverse displacements inside an infinite
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polymer and therefore cannot be smaller than 1/2,%% from
where z=2.

A natural way to describe the effective renormalization of
v and D by the nonlinearity consist in introducing?® a gener-
alized viscosity v(w,q) and a generalized pumping intensity
D(w,q) defined by the relations

G(w,q) =[-iw+ v(w,q)¢*]™", (72)

C(w,q) =27%G(w,q)|*D(w,q), (73)

where G(w,q) and C(w,q) are, respectively, the Fourier
transforms of the response function and of the two-point cor-
relation function of f(z,x). The form of Egs. (72) and (73)
corresponds to the replacement of the considered nonlinear
system by a linear system with the same form of G(w, q) and
Clw,q).

The compatibility with the behavior described by Eq. (69)
requires then that at small enough ¢,
2-7)

lim v(w,q) < g ~(d+2x-2)

w—0

lim D(w,q) = g
w—0

This suggests that the behavior of low-frequency fluctuations
with typical or smaller amplitude can be qualitatively de-
scribed by using an effective viscosity v (R) and an effec-
tive pumping intensity D.4(R) which algebraically depend on
a length scale R,

2-z 4+d-3z
veff<R>~v(5) , Deff<R)~D(5) . (74)
al/ aD

where in accordance with Eq. (70) we have replaced y by
2—z. As a convenient way of describing the amplitudes of
Verr(R) and D.g(R), we have introduced in Egs. (74) two new
length scales, a, and ap. For d=1 and £é=<x, both a, and ap
can be expected to be of the order of x, because in such a
situation x is the only relevant length in the problem. How-
ever for £>x, and/or d>1 these two length scales do not
have to be of the same order. Since both v and D increase
under the renormalization, Egs. (74) can be expected to be
applicable only for R>a,,ap.

In scaling regime, when vi(R) and D 4(R) behave them-
selves in accordance with Egs. (74), both these quantities
have no direct relation to their bare values, v and D. Their
origin can be traced to the effect of fluctuations with shorter
wavelengths than the given length scale R. In particular, it
follows from the structure or the KPZ equation (7) that at the
length scale R the role of the effective random potential is
played by the deviation of —(J/2){u®); from its average
value, —(J/2)(u®)g, where (---)p denotes spatial averaging
over a region with a linear size of the order of R. From this
the value of D 4(R) can be estimated as

Deg(R) ~ f er‘+°° ddu(t,x)ub(t + 7,x +1) ]
[r[<R —»

24d 4
Ry (®) (75)

Vett (R )

In Eq. (75) we have assumed that the integration over d7 can
be replaced by the multiplication by the factor ~7(r), where
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7(r) ~r?/ vg(r) is the characteristic relaxation time which
can be associated with the length scale r, whereas the result
of the integration over dr has been estimated assuming that
as a consequence of the universality for any length scale
there exist only one characteristic velocity scale which can
be associated with this length scale (in other terms, there is
no anomalous scaling). We have chosen as such a velocity
scale the typical velocity, u,(R), defined by the relation

Deff(R)

Ver(R)R? (76)

g o(R) = (u)z ~
Substitution of Eq. (76) into Eq. (75) then gives the rela-
tion

ngf(R) __ p2-d

Deff(R) ' (77)

whose structure is analogous to that of Eq. (68). The consis-
tency between Egs. (77) and (70) confirms the correctness of
assumptions, which have been used for the derivation of Eq.
(77). In terms of the length scales a, and aj introduced
above, see Egs. (74), relation (77) can be rewritten as

X (2-d)/3(2—2)
(B0
ap

which for d=1 (when z=3/2) is reduced to
a,~ (x%aD)'B. (79)

When the dynamics of fluctuations at R~ ¢ is dominated
by wave breaking, the value of ut%p(g) can be estimated as a
characteristic velocity ug~ (D7/ €)%, which is created by a
random force with characteristic length scale ¢ during the
time 7;~ &/uy required for breaking of such a fluctuation,
which gives uz~ (D/&*+)!"3. A comparison of this estimate
with Egs. (75) and (76) suggests that in such a regime
Di(é€) ~ D, that is, ap~ & At d<2 we expect this conclu-
sion to be applicable when £é=x,, whereas at d>2 in the
whole region of the existence of the strong-coupling phase.

It follows from the definition of u,,(R) that with the in-
crease in R the value of uy,(R) has to decrease. A compari-
son of Eq. (76) with Egs. (74) allows one then to conclude
that z has to be larger than 1.

B. Universal part of the left tail

After replacing in Eq. (45) T/2J=v by v4(A), one ob-
tains a relation which allows one to find that in the regime
when the renormalization effects are important the estimate
for the soliton width A acquires a form

1/2(z-1)
A=A(F) ~ 4%) . (80)

14

A substantial change in A in comparison with what is given
by Eq. (45) means that in the regime we consider now the
probability of a large negative fluctuation of F is determined
not by a narrow vicinity of the fluctuation which minimizes
the original action (like it happens in the more distant part of
a tail), but by a wide vicinity of an essentially different fluc-

PHYSICAL REVIEW B 78, 024206 (2008)

tuation whose dominance is ensured by a factor related to
the integration over its vicinity. In the framework of a
renormalization-group approach, this factor is effectively
taken into account when one is replacing different param-
eters by their renormalized values.

An estimate for the action can be then obtained by making
in Eq. (67) a replacement

v— Veff(A)’ D— Deff(A)’ (81)

with A given by relation (80). With the help of Eq. (77) the
result of this substitution can be reduced to the form

—F\7
S(F)~\—, 82
) (F*) (82)
with exponent
z
=np.=———, 83
== 500 (83)

which depends on d only through the dynamic exponent
z=2z(d) but not explicitly. Here

vL\?
F. ~JV<—2> (84)
aV

plays the role of a characteristic free-energy scale whose
dependence on L is described by the exponent

w=1-—=—-1. (85)
-z

The universality hypothesis for the directed polymer

problem?* (or, more generally, for the collective pinning

problem?) suggests that F, has to be of the same order as a

characteristic elastic energy E,~J(dx)?/L, where the depen-

dence of the characteristic transversal displacement between

the two ends of a polymer, dx=|x(t=L)—x(t=0)|«L¢, on its

total length L is described by the roughening exponent { so
that

w=2¢-1. (86)

A comparison of Eq. (86) with Eq. (85) demonstrates that the
fluctuations of dx are described by the same roughening ex-
ponent {=1/z as fluctuations inside an infinite polymer, see
Eq. (71), in full agreement with what one expects from the
universality. This consistency can be considered as an addi-
tional confirmation of the validity of the set of assumptions
which have been used for obtaining Eq. (82).

Note that the list of these assumptions includes the con-
jecture that the system evolves sufficiently slow so that at
relevant length scales, it can be considered as already equili-
brated, which is a necessary condition for using Egs. (74).
For this the total evolution time L has to be much larger then
the characteristic relaxation time 7(A)~ A%/ v(A), which
can be associated with the length scale A.?° Since in terms of
A(F) and L relation (82) can be rewritten as
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Veff(A) L
S(F) A2 L D) (87)
the constraint L> 7(A) is equivalent to S(F)>1 and, accord-
ingly, is automatically fulfilled as soon as one is dealing with
the tail.

It is also important that the effective viscosity and effec-
tive pumping intensity given by Egs. (74) and following
from the form of the correlation function (69) can be used for
the description only of typical (or more weak) fluctuations.
The comparison of the characteristic velocity of the flow
created around the instanton,

F 12
.

with u,,(A) as the typical velocity of equilibrium fluctua-
tions at the length scale A [see Eq. (76)], demonstrates that in
the considered case both quantities are of the same order, and
therefore, the approach based on using Eqs. (74) with R
~ A is indeed justified. This allows us to conclude that our
instanton is created by fluctuations of the effective random
potential whose amplitude is typical for their length scale. In
such a situation the only reason why the probability of the
instanton is small is that the signs of these typical fluctua-
tions have to be same in all L/7{(A) independent time inter-
vals of the length 7(A). This provides a qualitative explana-
tion why the expression for the action can be reduced to a
very simple form S~ L/ 7(A).

At large values of —F the range of the applicability of Eq.
(82) is restricted by the constraint A(F)>a,,ap, which is
required for making replacement (81). In particular, when
d<2 and £<x (so that a,~ ap~x,) one can expect that at
A(F) ~ x,, that is, at

T°L

-F~F,~—,
Jx,

¢ (89)
a crossover takes place from dependence (82) to dependence
(46).

On the other hand, in situations when & (or d) is too large
for dependence (46) to have any range of applicability, one
could expect to have a direct crossover between dependences
(57) and (82). However, the range of the applicability of
Eq. (57) describing the far-left tail corresponds to
A(F)<min[ag,ap] and of Eq. (82) describing the universal
regime to A(F)>max[ag,ap]. Since we expect that in a gen-
eral situation the two length scales, a £ and ap, are essentially
different, we have to admit the existence in such a case of an
intermediate region in F, where the form of the left tail of
P, (F) cannot be established without further investigation.

As it has been already mentioned above, at d=1 the value
of the exponent z is known exactly. Substitution of z=3/2
and a,~x, into Egs. (82) and (83) then reproduces an esti-
mate for S(F) which up to unknown numerical factor coin-
cides with Eq. (38) for S(F) in the far-left tail. This shows
that for d=1 and £<<x the dependence of S on all param-
eters in the universal part of the left tail is exactly the same
as in its nonuniversal part at F, <—F<F,. In this particular
case at —F~F, only a numerical coefficient in dependence
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(82) can experience a crossover. For d=1 and &> x,, substi-
tution of Eq. (79) with ap~ £ into Eq. (84) reproduces an
estimate for F,(L) which has been obtained by Nattermann
and Renz?’ from scaling arguments complemented by the
assumption that at low enough temperatures F,(L) has to be
temperature independent and follows also from the replica-
symmetry-breaking analysis of Ref. 28.

For d # 1 the value of the exponent # in the universal part
of the left tail, 7_=z/[2(z—1)], does not coincide with its
value in the far-left tail, where it is given by 2—d/2 [see Eq.
(46)]. Note that expression (82) decreases with the increase
in L as long as n_>1, that is, 1 <z<2. This means that in
the universal part of the left tail the condition which is nec-
essary for the possibility of having a macroscopic optimal
fluctuation (whose size is much larger then &) is changed
from d<2 to 1 <z<<2. On the other hand, when the renor-
malization effects are taken into account, the condition
0<d <4 required for having a minimum of S with respect to
A (see Sec. IV B) is replaced by 4/3 <z<2. Thus, the range
of the applicability of Eq. (82) is not restricted to 0<d <2
(as in the case of the analogous expression for the far-left
tail) but extends itself to the whole region of parameters
where the strong-coupling phase does exist and z>4/3 (the
condition z<<2 always has to be fulfilled, see Sec. VI A).
Note that for d=1 the value of {=1/z is equal to 2/3 and
according to numerical simulations goes down with the in-
crease in d.? This means that the restriction z>4/3 is ful-
filled for any physical dimension.

C. Universal part of the right tail

One could expect the approach based on the application
of the replacements (81) to be applicable also for the descrip-
tion of the universal part of the right tail. However, it turns
out that in this case the situation is more complex. This can
be understood by comparing the size of the optimal fluctua-
tion A,(F), given by Eq. (62), with the length scale R.(F) at
which the typical velocity of equilibrium fluctuations

uy(R,), given by Eq. (76), becomes comparable with
P
F ( F )1/2
~— =], 90
“Fa, T \uL (50)

the characteristic velocity inside the optimal fluctuation with
the size A.(F). In Eq. (90) we have used the estimate for
A, (F) given by Eq. (62), which has led to exactly the same
estimate for uy in terms of |F| as in the left tail [see Eq. (88)].
This means that in both tails R.(F) has to be of the same
order. On the other hand, in Sec. VI B we have established
that in the left tail the relation up~ u,(R.) holds precisely
when R, ~ A(F). This allows one to conclude that in the right
tail,

R.(F) ~ A(-F), 1)

where A(F) is the instanton width in the left tail given by Eq.
(80).

Accordingly, for the creation of the optimal fluctuation
whose size A, (F) is much larger than R,.(F) (as it is required
in the case of the right tail), the fluctuations of the effective
random potential with length scale A (F) should have ampli-
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tudes much larger than typical. Naturally, the probability of
such fluctuations is strongly suppressed and cannot be esti-
mated by using Egs. (81).

The most effective way of formation of a fluctuation
whose amplitude u substantially exceeds the typical veloc-
ity of fluctuations at the corresponding length scale consists
in formation of a set of fluctuations with smaller length
scales, such that for them the amplitudes of the order of u
are typical. This means that the length scales of these fluc-
tuations should be of the order of R.(F), and accordingly, the
estimate for the action should include an additional factor
(A,/R.)? which takes into account the need for the spatial
coherence of these fluctuations. This leads to

L (AN (F\™
S(F) ~ (—) ~ (—) , (92)
7(R.) \ R. F,
where F, is the same characteristic free-energy scale as in

the universal part of the left tail [see Eq. (84)], whereas the
exponent 7, is given by

(1+4d)z

N+ 2z-1) (93)
In terms of the renormalization approach exactly the same
result is obtained if the renormalization is stopped not at the
scale A,(F), corresponding to the total size of the optimal
fluctuation but at a smaller scale R, (at which the fluctuations
stop to be strong enough for inducing the renormalization),
that is, by using Eq. (64) with the replacement

4+d-3z
D — Deg(R.) ~ D(_*) ; (94)
ap

where R~ A(=F). Since the value of D (R,) does not de-
pend on A_, the condition for the existence of a minimum of
S with respect to A, remains the same as has been found
when deriving Eq. (64), 0<d <4. On the other hand, in the
universal part of the right tail the condition required for the
possibility of having a macroscopic optimal fluctuation
(whose size is much larger then &) is changed from d<2 to
1 <z<2, which in the strong-coupling phase anyway has to
be fulfilled [see Sec. VI A]. Therefore, the range of the ap-
plicability of Eq. (92) is restricted from above not by d=2
(as in the case of the analogous expression for the far-right
tail) but by d=4.

Note that in contrast to exponent 7_ given by Eq. (83),
exponent 7, depends both on z and d. However, the ratio of
these two exponents does not depend on z,

2 sa, (95)
-
and therefore is known exactly. The fact that in the regime
where the renormalization effects are important both tails of
the free-energy distribution function incorporate the same
characteristic free-energy scale F, confirms that this regime
corresponds to studying the universal form of this distribu-
tion function.
A comparison of Eq. (62) with Eq. (80) allows one to
verify that the condition A (F)> R.(F), on which we have
relied when deriving Eq. (92), is equivalent to S(F)>1 and
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therefore is always satisfied as soon as we are dealing with
the tail. Another condition whose fulfillment is required to
justify replacement (94) is related to the quasistationarity of
the problem. Namely, the total evolution time L has to be
much larger than the characteristic relaxation time
7(R,) ~R*/ ve(R,) which can associated with the length
scale R.(F). For R.(F)~ A(=F), this condition is also re-
duced to S(F)>1.

From the side of large F' the range of the applicability of
Eq. (92) is restricted by the constraint R, > ay,, whose fulfill-
ment is also required for making replacement (94). In par-
ticular, at d<<2 and £<x, (when ap~x;), the crossover be-
tween dependences (92) and (64) can be expected to occur at
F~F,, where F. is given by the same expression [Eq. (89)]
as in the left tail. On the other hand, at d>2 the crossover
between dependences (92) and (66) has to take place while
R.(F) is still much larger than & In this situation we expect
that the two contributions to P, (F) [one from the “macro-
scopic” instanton, corresponding to dependence (92) and the
other from the “microscopic” instanton corresponding to de-
pendence (66)] can coexist with each other and the crossover
has to occur when they become comparable with each other.

VII. CONCLUSION

In the present work we have studied the form of the tails
of the free-energy distribution function P, (F) in the directed
polymer problem both for a S-correlated random potential
and for the case of a finite correlation length &. In all regimes
that we have investigated the tails have a stretched-

exponential form,
F N+
] . (96)

—In P, (=F)~ {F 73

with F,(L)oL®* and therefore can be characterized by the
two exponents whose values depend on the dimensionality of
the space in which the polymer is imbedded. We use letter d
to denote the transverse dimensionality of this space, that is,
the number of components of the displacement vector u.

For sufficiently large fluctuations of F the form of the tails
of P,(F) is determined by the form of the most optimal
fluctuation of a random potential which is sufficient for
achieving a given value of F. For a d-correlated random
potential and d<<2 the minimization of the action corre-
sponding to such a fluctuation allows one to show that in the
far-left tail,

n=—""7, w.=—. (97)

The same values of 7_ and w_ have been obtained by Mon-
thus and Garel® by constructing a generalization of the
Imry-Ma scaling argument (based on a disorder-dependent
Gaussian variational approach introduced in Ref. 30). How-
ever, the approach of Ref. 29 leaves one in doubt on what is
the range of its applicability (and if such a range exists at
all), whereas the methods used in this work allowed us to
establish that the exponents (97) are applicable in the most
distant part of the left tail corresponding to the nonuniversal
regime.
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At d=2 the problem with strictly S&-functional correla-
tions of a random potential becomes ill-defined, so it be-
comes necessary to introduce some regularization. The natu-
ral way of doing it consists in assuming that a random
potential correlations are characterized by a finite correlation
radius &. In the case of £>0 one finds that in the most distant
part of the left tail the size of the optimal fluctuation of a
random potential has to be comparable with ¢ and the values
of the exponents become superuniversal, that is, not depen-
dent on d,

7.=2, w_=1/2. (98)

For d<2 and not too large &, one can expect to have a
crossover from regime (98) to regime (97).

The application of the optimal-fluctuation approach to the
analysis of the right tail shows that for d <2 the most distant
part of this tail is described by

4+d
2 b

2-d

¢ 99
YT 4rd ©9)

7=
In contrast to the case of the left tail, the form of the most
distant part of the right tail is insensitive to whether ¢ is zero
or finite. On the other hand, for d>2 the size of the optimal
fluctuation again becomes determined by & which leads to
the change in the exponents to

7,=3, (100)

Note that the value of w, given by Eq. (99) corresponds to
the value of the roughening exponent,

w,=0.

3

lp=——

, 101
4+d (101)

which is known as “Flory exponent™! and follows from

simple scaling arguments of Refs. 31, as well as from the
Gaussian variational calculation of Mezard and Parisi*? in-
corporating a hierarchical replica-symmetry breaking. Our
analysis has revealed that this scaling analysis (which insofar
has been assumed to be of little relevance because it cannot
reproduce the exactly known value of {=2/3 at d=1) in
reality is applicable for the description of the most distant
(nonuniversal) part of the right tail of P;(F). However, it still
remains unclear whether the appearance of the same expo-
nent in the variational calculation in Ref. 32 (based on the
maximization of the variational free energy of a system with
L=) is not more than a coincidence.

If the parameters of the system correspond to the strong-
coupling phase, the decrease in |F| makes the optimal-
fluctuation approach no longer directly applicable because
the size of the optimal fluctuation becomes too large (or its
amplitude becomes too small) to neglect the renormalization
of the parameters of the system by fluctuations. In such a
situation, a consistent inclusion of the renormalization effects
into account allows one to express the exponents in terms of
the roughening exponent {=1/z describing the behavior of
displacement fluctuations inside an infinite polymer [see Eq.
(71)]. For universal parts of left and right tails, one obtains,
respectively,
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1 __l+d
T21-9° *T-g

Not unexpectedly, one finds that the value of w is the
same for both tails and is equal to 2{-1, as it could be
expected from the universality. Quite remarkably, the ratio
7./ m_=1+d does not depend on .

The value of ¢ is known exactly only at d=1, where
{=2/3. In this case the values of 7_=3/2 and 7,=3 which
follow from Egs. (102) are in perfect agreement with the
exact solution'' of the polynuclear growth (PNG) model,
which is accepted to belong to the same universality class. In
terms of the directed polymer problem the PNG model cor-
responds to the Poisson distribution of identical pointlike
impurities and a rather peculiar limit of vanishing elasticity,
J=0, and zero temperature.''* For this model the form of
the distribution function P;(F) in the universal regime, as
well as the scaling function g(a) entering Eq. (69), is known
exactly.!!3* The consistency between our results and that of
Ref. 11 confirms that the directed polymer problem defined
by Eq. (2) and the PNG model indeed belong to the same
universality class.

The nonuniversal tails in the PNG model have been ana-
lyzed in Ref. 35. Naturally, in the nonuniversal regime even
the models belonging to the same universality class can have
different tails. The difference is especially evident in the case
of what we call the far-right tail because in the PNG model
the energy is by definition bounded from above and therefore
its distribution function has to vanish for large enough posi-
tive fluctuations. On the other hand, it follows from Ref. 35
that in the PNG model the far-left tail is described by
S(F)«F In(-F/L) and, thus, also has nothing in common
with the far-left tail of the model considered in this work.

In terms of the exponent w=2¢-1, Egs. (102) can be
rewritten as

- (102)

1 1+d

7]_:l—a) ’ 7Lr:l—w

(103)

Our results demonstrate that in model (2) the analogous re-
lations are fulfilled also in nonuniversal regimes (where w is
not obliged to coincide with 2{—1 and be the same in both
tails) as soon as the size of the optimal fluctuation is compa-
rable with the total length of a string. For the far-left tail this
has been known>3¢ from the Kardar-Zhang replica approach.
Recently both relations (103) have been derived by Monthus
and Garel®® with the help of a recursive procedure for the
zero-temperature problem on a hierarchical diamond lattice
whose effective dimension is equal to d. These authors have
also suggested that the same relations can be expected to
hold on all hypercubic lattices. Although, in our opinion, the
argument accompanying this proposal does not take into ac-
count some important differences between hypercubic and
hierarchical lattices, the results derived in this work confirm
its correctness.
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APPENDIX A: THE REPLICA APPROACH

The replica approach to the directed polymer problem is
based on calculating the moments Z,=Z" of the distribution
of the partition function Z=z(L,0) and allows one to find the
far-left tail of P;(F) without relying on the analytical con-
tinuation of n to 0. Kardar* was the first to notice that for any
integer n>1 (and large enough polymer length L) Z, with an
exponential accuracy can be approximated as

Z, = exp[— Ey(n)LIT], (A1)

where Ey(n) is the ground-state energy of the quantum-
mechanical Hamiltonian,

A

Hn == (A2)

n 1 non
V-2 2 U —xy),
1

T2
Zla: 2Ta:l b=1

describing n bosons whose mass is equal to J (with T playing
the role of #) and interaction to -U(x)/T. In a
(1+1)-dimensional system with a &-correlated random po-
tential, U(x)=U,8(x), the ground-state wave function for the
Hamiltonian (A2) and its energy,

vo) Ju;
E =-— - -1), A3
o(n) T "5 4T4n(n ) (A3)
can be found exactly.” This gives
JU? )
Z, L], A4
n CXP( " (A4)

where the linear in n term in Ey(n) has been omitted because
it can be eliminated by a constant shift of the potential V(z,x)
in Eq. (2). Note that the form of Eq. (A4) does not depend on
the initial condition. The choice of the initial condition mani-
fests itself only in the form of a prefactor which in the first
approximation can be ignored.

Since Z"=exp(-nF/T), Z, can also be expressed in terms
of P;(F), the distribution function of the free energy
F=f(L,0)=—-T In Z,

Z,= f v dFP;(F)exp(- nF/T). (A5)

It is clear that the integral in Eq. (A5) can be convergent for
any integer n>1 only if the left tail of P;(F) decays faster
than exponentially. In such a case the integration in Eq. (A5)
can be performed with the help of the saddle-point approxi-
mation. A comparison of the two expressions for Z, [Egs.
(A4) and (A5)] has led Zhang to conclusion’ that the alge-
braic growth of In Z, % Ln''® at large n can be recovered only
if one assumes that when —F is large S(F)=-In[P(F)] is
proportional to (=F/L®)” with »=1/(1-w).? Thus, 1/w=3
corresponds to n=3/2.

It is not hard to check that expression (38) for S(F) de-
rived in Sec. IV A allows one to reproduce not only the
power of n but also the full expression (A4), including the
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coefficient in front of n’. For such a form of the tail the
integral in Eq. (A5) at positive n is dominated by the vicinity
of the saddle-point situated at

JUSL
F=—F/L)n?, F(L)=—2%, A6
L)n L) =2 (A6)
where the full expression standing in the exponent,
S(F) =~ S(F) - nFIT, (A7)

has a maximum with respect to F. Substitution of Eq. (A6)
into Eq. (A7) leads then to Eq. (A4), whereas calculation of

#S(F)/dF2=1/(2TF .n) allows one to verify that the condi-
tion for the applicability of the saddle-point approximation
has a form (F./T)n*> 1 and is automatically fulfilled for any
integer n>1 as soon as F.> T, which anyway is required for
the applicability of Eq. (Al).

Since the explicit expression for Z, given by Eq. (A4) can
be derived only at integer n> 1, the region of the applicabil-
ity of the replica approach is restricted to —F> F (L), that is,
coincides with the region where the left tail can be found
with the help of the optimal-fluctuation approach (see Sec.
IV A) without taking into account the renormalization ef-
fects. However, the analysis of Sec. VI B has demonstrated
that in the (1+ 1)-dimensional systems with S-functional cor-
relations the form of the left tail in the region F,<-F<F,
where the renormalization effects have to be taken into ac-
count, remains qualitatively the same as for —F>F. In
terms of the replica approach this means that the analytical
continuation of the partition function of model (A2) even at
n<1 has to behave itself as if it was dominated by the con-
tribution from the same state as at n>>1, although at n<<1
this state no longer has the lowest energy.® The reasons for
that still remain to be elucidated.

For £>0 the form of the ground state of the Hamiltonian
(A2) cannot be found exactly even when d=1. However, for
&> x, the value of Ey(n) in a (1 + 1)-dimensional system with
&£>0 can be found rather accurately for any integer n=1,
because in this regime the typical distance between bosons is
much smaller then the radius of their interaction?® and thus
the main contribution to Ey(n) is given simply by
—~U(0)n?/2T. A comparison of Z,~exp[U(0)Ln?/2T%] with
Eq. (A5) then immediately leads to the conclusion that the
form of the far-left tail must be described by S=F?/2U(0)L,
as it has been already derived in Sec. IV C with the help of
the optimal-fluctuation approach. From the origin of this re-
sult it is clear that it has to be applicable for the description
of the most distant part of the left tail at finite & for any d.
The two contradicting attempts of generalizing the replica
approach to d>1 in the regime when the main contribution
to Ey(n) is determined by the full form of U(x) (and there-
fore cannot be found without introducing some additional
approximations) have been undertaken by Zhang®® and
Kolomeisky.?

APPENDIX B: FIXED INITIAL CONDITION

If at =0 the polymer is fastened at x=0, the initial con-
dition for the partition function z(¢,x) has to be written as
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2(0,x) = x;6(x), (B1)

where a dimensional factor x,; (with the same dimensionality
as x) has to be inserted to make z(z,x) a dimensionless quan-
tity. This factor has no physical meaning and must drop out
from all physical quantities.

In the absence of pumping the initial condition (B1) leads
to

2
z(t,x) = M;ﬁexp{— x_] =79(,x) (B2)

4vt
and
flt.x) = JZ—X: ¥ §In4:§w = fO(1.), (B3)
which in terms of u=V f(¢,x)/J corresponds to
u(t,x) = x/t = u%(1,x). (B4)

Accordingly, the initial condition for f(¢,x) can be formu-
lated as

lim[£(7,x) — £9(z,x)]= 0. (B3)
t—0

In such a situation it seems to be convenient to count off the
free energy from its value in the absence of pumping intro-
ducing

F(6,%) = f(t,%) = fO(t,x),

(i) because f(x,#) in contrast to f(,x) does not depend on x,
and (ii) because this allows to rewrite the initial condition
(B5) as

(B6)

£(0,x) =0.

Accordingly, in the case of fixed initial condition F should be
redefined as

(B7)

F=f(L,0) = f(L,0) - fO(L,0).

It is clear that the stationary solution (32) in no way re-
sembles the initial condition (B5). However, like in the case
of the free initial condition, it turns out possible to modify
this solution without increasing the action in a way which
eliminates the inconsistency with the initial condition.

This solution has to interpolate between the soliton at
small x and the dependence f(r,x)=f%(r,x), which has to
survive in the regions that in a given moment are too far
from the soliton to feel its presence. One can expect that the

(B8)
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time of the formation of a solution, #;, will be of the same
order as for free initial condition, ¢~ v/ v2, because at
t>t; and x~A the velocity of the flow (B4) produced by
fixed initial condition is much smaller then the velocity
v~ v/ A produced by the soliton with the width A. Then at
t>1t, and A<x<<vt f has to be of the form

Juv? T 4t
ftx) == (0= 1)) + Jolx| + “In— 2 = f9(1,x),
2 2 Xy

(B9)

where the constant has been chosen in such a way that the
extrapolation to =1, gives f(r;,0)=(z,,0).

A comparison of Eq. (B3) with Eq. (B9) shows that the
crossover between these two dependences has to take place
in the vicinity of |x|=v?. Since we assume that at |x|> A the
potential is absent, this crossover has to be described by

f(t,x) = f1,x) = T In z,(2, (B10)

where the function z,(¢,x) is the exact solution of the diffu-
sion equation z,=vz,, which at t=t|=t, exp[(Jv?/2T)t,]~ 1,
[that is, when f“(z,vr) coincides with fO(r,v7)]
smoothly interpolates between z;=1 at —-x>A and
zi~exp[—Jx?/2Tt|] at x> A. Therefore, the asymptotic be-
havior of z,(z,x) at large ¢ can be found by assuming

21(t],%) = 0(= x) + O(x)exp[— Jx*/2Tt}],

x| —v1),

(B11)

where 6(x)= %[1 +sign(x)] is the steplike function. However,
for establishing the relation between S and F' the exact form
of z,(t,x) is irrelevant. We only have to be sure that at
x= -yt this quantity is very close to 1, and this is satisfied as
soon as 1> 1.

The main difference with the case of free initial condition
appears in the relation between A and F. Subtraction of Eq.
(B3) from Eq. (B9) shows that for fixed initial condition Eq.
(37) should be replaced by

T* T L
= 5L+ —~In—.

2JA 2 1

-F (B12)
However, for L>1t, the second term in the right-hand side of
Eq. (37) is much smaller then the first one (which is of the
order of TL/t,) and therefore can be neglected.

This allows one to conclude that in the case of fixed initial
condition the main contribution to the action has exactly the
same form as for free initial condition. The derivation above
can be easily generalized for the case of d>> 1, as soon as one
can assume that the optimal fluctuation of a random potential
remains almost uniform along t.
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