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The free-energy distribution function of an elastic string in a quenched random potential, PL�F�, is investi-
gated with the help of the optimal fluctuation approach. The form of the far-right tail of PL�F� is found by
constructing the exact solution of the nonlinear saddle-point equations describing the asymptotic form of the
optimal fluctuation. The solution of the problem is obtained for two different types of boundary conditions and
for an arbitrary dimension of the imbedding space 1+d with d from the interval 0�d�2. The results are also
applicable for the description of the far-left tail of the height distribution function in the stochastic growth
problem described by the d-dimensional Kardar-Parisi-Zhang equation.
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I. INTRODUCTION

In many physical situations, the behavior of some ex-
tended manifold is determined by the competition between
its internal elasticity and interaction with external random
potential, which at all reasonable time scales can be treated
as quenched. A number of examples of such a kind includes
domain walls in magnetic materials, vortices and vortex lat-
tices in type-II superconductors, dislocations and phase
boundaries in crystals, as well as some types of biological
objects. It is expected that the presence of a quenched disor-
der makes at least some aspects of the behavior of such sys-
tems analogous to those of other systems with quenched dis-
order, in particular, spin glasses.

Following Ref. �1�, in the case when internal dimension
of an elastic manifold is equal to 1 �that is, an object inter-
acting with a random potential is an elastic string�, the sys-
tems of such a kind are traditionally discussed under the
generic name of a directed polymer in a random medium. In
such a case, the problem turns out to be formally equivalent
�2� to the problem of a stochastic growth described by the
Kardar-Parisi-Zhang �KPZ� equation �3�, which in its turn
can be reduced to the Burgers equation �4� with random
force �see Refs. �5,6� for reviews�.

The investigation of PL�F�, the free-energy distribution
function for a directed polymer �of a large length L� in a
random potential, was initiated by Kardar �7�, who proposed
an asymptotically exact method for the calculation of the
moments Zn�Zn of the distribution of the partition function
Z in a �1+1�-dimensional system �a string confined to a
plane� with a �-correlated random potential and made an
attempt of expressing the moments of PL�F� in terms of Zn.
Although soon after that, Medina and Kardar �8� �see also
Refs. �5,9�� realized that the implementation of the latter task
is impossible, the knowledge of Zn allowed Zhang �10� to
find the form of the tail of PL�F� at large negative F. The two
attempts of generalizing the approach of Ref. �10� to other
dimensions were undertaken by Zhang �11� and Kolomeisky
�12�.

Quite recently, it was understood �13,14� that the method
of Ref. �10� allows one to study only the most distant part of
the tail �the far-left tail�, where PL�F� is not obliged to have
the universal form PL�F�= P��F /F�� /F� �with F��L�� it is

supposed to achieve in the thermodynamic limit, L→�. For
�1+1�-dimensional systems, the full form of the universal
distribution function is known from the ingenious exact so-
lution of the polynuclear growth �PNG� model by Prähofer
and Spohn �15�. However, there is hardly any hope of gen-
eralizing this approach to other dimensions or to other forms
of random potential distribution.

One more essential step in the investigation of different
regimes in the behavior of PL�F� in systems of different di-
mensions has been made recently �13,14� on the basis of the
optimal fluctuation approach. The original version of this
method was introduced in the 1960s for the investigation of
the deepest part of the tail of the density of states of quantum
particles localized in a quenched random potential �16–18�.
Its generalization to Burgers problem has been constructed in
Refs. �19,20�, but for the quantities which in terms of the
directed polymer problem are of no direct interest, in con-
trast to the distribution function PL�F� studied in Refs.
�13,14�. Another accomplishment of Refs. �13,14� consists in
extending the optimal fluctuation approach to the region of
the universal behavior of PL�F�, where the form of this dis-
tribution function is determined by an effective action with
scale-dependent renormalized parameters and does not de-
pend on how the system is described at microscopic scales.

In the current work, the results of Refs. �13,14� describing
the behavior of PL�F� at the largest positive fluctuations of
the free energy F �where they are not described by the uni-
versal distribution function� are rederived at a much more
quantitative level by explicitly finding the form of the opti-
mal fluctuation which is achieved in the limit of large F. This
allows us not only to verify the conjectures used earlier for
finding the scaling behavior of S�F��−ln�PL�F�� in the cor-
responding regime, but also to establish the exact value of
the numerical coefficient entering the expression for S�F�.
For brevity, we call the part of the right tail of PL�F� studied
below the far-right tail. The outlook of the paper is as fol-
lows.

In Sec. II, we formulate the continuous model which is
traditionally used for the quantitative description of a di-
rected polymer in a random medium and remind how it is
related to the KPZ and Burgers problems. Section III briefly
describes the saddle-point problem which has to be solved
for finding the form of the most optimal fluctuation of a
random potential leading to a given value of F. In Sec. IV,
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we construct the exact solution of the saddle-point equations
introduced in Sec. III for the case when the displacement of
a considered elastic string is restricted to a plane �or, in other
terms, the transverse dimension of the system d is equal to
1�. We do this for sufficiently large positive fluctuations of F,
when the form of the solution becomes basically independent
on temperature T and therefore can be found by setting T to
zero.

However, the solution constructed in Sec. IV turns out to
be not compatible with the required boundary conditions.
Section V is devoted to describing how this solution has to
be modified to become compatible with free initial condition
and in Sec. VI, the same problem is solved for fixed initial
condition. In both cases, we find the asymptotically exact
�including a numerical coefficient� expression for S�F� for
the limit of large F. In Sec. VII, the results of the two pre-
vious sections are generalized for the case of an arbitrary d
from the interval 0�d�2, whereas the concluding Sec. VIII
is devoted to summarizing the results.

II. MODEL

In the main part of this work, our attention is focused on
an elastic string whose motion is confined to a plane. The
coordinate along the average direction of the string is de-
noted t for the reasons which will become evident few lines
below and x is string’s displacement in the perpendicular
direction. Such a string can be described by the Hamiltonian

H�x�t�� = �
0

L

dt	 J

2

dx�t�

dt
�2

+ V�t,x�t��� , �1�

where the first term describes the elastic energy and the sec-
ond one the interaction with a random potential V�t ,x�, with
L being the total length of a string along axis t. Note that the
form of the first term in Eq. �1� relies on the smallness of the
angle between the string and its preferred direction.

The partition function of a string which starts at t=0 and
ends at the point �t ,x� is then given by the functional integral
which has exactly the same form as the Euclidean functional
integral describing the motion of a quantum-mechanical par-
ticle �whose mass is given by J� in a time-dependent random
potential V�t ,x� �with t playing the role of imaginary time
and temperature T of Plank’s constant ��. As a consequence,
the evolution of this partition function with the increase in t
is governed �2� by the imaginary-time Schrödinger equation

− Tż = 
−
T2

2J
�2 + V�t,x��z�t,x� . �2�

Here and below, a dot denotes differentiation with respect to
t and � differentiation with respect to x.

Naturally, z�t ,x� depends also on the initial condition at
t=0. In particular, fixed initial condition, x�t=0�=x0, corre-
sponds to z�0,x�=��x−x0�, whereas free initial condition
�which implies the absence of any restrictions �9,14� on x at
t=0� to

z�0,x� = 1. �3�

Below, the solution of the problem is found for both these
types of initial condition.

It follows from Eq. �2� that the evolution of the free en-
ergy corresponding to z�t ,x�,

f�t,x� = − T ln�z�t,x�� , �4�

with the increase in t is governed �2� by the KPZ equation
�3�

ḟ +
1

2J
��f�2 − 	�2f = V�t,x� , �5�

with the inverted sign of f , where t plays the role of time and
	�T /2J of viscosity. On the other hand, the derivation of
Eq. �5� with respect to x allows one to establish the equiva-
lence �2� between the directed polymer problem and Burgers
equation �4� with random potential force

u̇ + u � u − 	�2u = J−1 � V�t,x� , �6�

where u�t ,x�=�f�t ,x� /J plays the role of velocity. Note that
in terms of the KPZ problem, the free initial condition �3�
corresponds to starting the growth from a flat interface,
f�0,x�=const, and in terms of the Burgers problem, to start-
ing the evolution from a liquid at rest, u�0,x�=0.

To simplify an analytical treatment, the statistic of a ran-
dom potential V�t ,x� is usually assumed to be Gaussian with

V�t,x� = 0, V�t,x�V�t�,x�� = U�t − t�,x − x�� , �7�

where an overbar denotes the average with respect to disor-
der. Although the analysis below is focused exclusively on
the case of purely �-functional correlations,

U�t − t�,x − x�� = U0��t − t����x − x�� , �8�

the results we obtain are applicable also in situations when
the correlations of V�t ,x� are characterized by a finite corre-
lation radius 
 because in the considered regime, the charac-
teristic size of the optimal fluctuation grows with the in-
crease in L and therefore for large-enough L, the finiteness of

 is of no importance and an expression for U�t− t� ,x−x��
can be safely replaced by the right-hand side of Eq. �8� with

U0 = �
−�

+�

dt�
−�

+�

dxU�t,x� . �9�

III. OPTIMAL FLUCTUATION APPROACH

We want to find probability of a large positive fluctuation
of free energy of a string which at t=L is fixed at some point
x=xL. It is clear that in the case of free initial condition, the
result cannot depend on xL, so for the simplification of nota-
tion, we assume below xL=0 and analyze fluctuations of
F= f�L ,0�− f�0,0�. As in other situations �16–18�, the prob-
ability of a sufficiently large fluctuation of F is determined
by the most probable fluctuation of a random potential V�t ,x�
leading to the given value of F.

In its turn, the most probable fluctuation of V�t ,x� can be
found �21� by looking for the extremum of the Martin-
Siggia-Rose action �22–24� corresponding to the KPZ prob-
lem,
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S�f ,V� =
1

U0
�

0

L

dt�
−�

+�

dx	−
1

2
V2

+ V
 ḟ +
1

2J
��f�2 − 	�2f�� , �10�

both with respect to f � f�t ,x� and to a random potential
realization V�V�t ,x�. The form of Eq. �10� ensures that its
variation with respect to V�t ,x� reproduces the KPZ equation
�5�, whose substitution back into Eq. �10� reduces it to the
expression

S�V� =
1

2U0
�

0

L

dt�
−�

+�

dx V2�t,x� , �11�

determining the probability of a given realization of a ran-
dom potential, P�V��exp�−S�V��. On the other hand, varia-
tion of Eq. �10� with respect to f�t ,x� shows that the time
evolution of the optimal fluctuation of a random potential is
governed by equation �25�

V̇ +
1

J
� �V � f� + 	�2V = 0, �12�

whose form implies that the integral of V�t ,x� over dx is a
conserved quantity.

Our aim consist in finding the solution of Eqs. �5� and
�12� satisfying condition

f�L,0� − f�0,0� = F , �13�

as well as an appropriate initial condition at t=0. The appli-
cation of this procedure corresponds to calculating the full
functional integral determining PL�F� with the help of the
saddle-point approximation. In the framework of this ap-
proximation, the condition �13� �which formally can be im-
posed by including into the functional integral determining
PL�F� the corresponding �-functional factor� leads to the ap-
pearance of the condition on V�t ,x� at t=L �21�,

V�L,x� = ���x� , �14�

where, however, the value of � should be chosen to ensure
the fulfillment of condition �13�.

The conditions for the applicability of the saddle-point
approximation for the analysis of the far-right tail of PL�F�
are given by S�1 and F�JU0

2L /T4. The origin of the
former inequality is evident, whereas the fulfillment of the
latter one ensures the possibility to neglect the renormaliza-
tion of the parameters of the system by small-scale fluctua-
tions �26�. We also assume that F�T, which ensures that the
characteristic length scale of the optimal fluctuation is suffi-
ciently large to neglect the presence of viscous terms in Eqs.
�5� and �12� �26�. This allows us to replace Eqs. �5� and �12�
by

ḟ +
1

2J
��f�2 = V , �15a�

V̇ +
1

J
� �V � f� = 0, �15b�

which formally corresponds to considering the original �di-
rected polymer� problem at zero temperature, T=0, where
the free energy of a string is reduced to its ground-state en-
ergy. In accordance with that, in the T=0 limit, f�L ,0� is
given by the minimum of Hamiltonian �1� on all string’s
configurations x�t� which at t=0 satisfy a chosen initial con-
dition and at t=L end up at x�L�=0.

Exactly like Eq. �12�, Eq. �15b� implies that V�t ,x� be-
haves itself like a density of a conserved quantity, but takes
into account only the nondissipative component to the flow
of V given by Vu, where

u � u�t,x� � J−1 � f�t,x� �16�

plays the role of velocity. Naturally, for 	=0, the time evo-
lution of u is governed by the nondissipative version of the
force-driven Burgers equation �6�,

u̇ + u � u = �V/J . �17�

IV. EXACT SOLUTION OF THE SADDLE-POINT
EQUATIONS

It is clear from symmetry that in the optimal fluctuation
we are looking for, both f�t ,x� and V�t ,x� have to be even
functions of x. After expanding them at x=0 in Taylor series,
it is easy to verify that an exact solution of Eqs. �15� can be
constructed by keeping in each of these expansions only the
first two terms

f�t,x� = J�A�t� − B�t�x2� , �18a�

V�t,x� = J�C�t� − D�t�x2� . �18b�

Substitution of Eqs. �18� into Eqs. �15� gives then a closed
system of four equations

Ȧ = C , �19a�

Ḃ = 2B2 + D , �19b�

Ċ = 2BC , �20a�

Ḋ = 6BD , �20b�

which determines the evolution of coefficients A, B, C, and
D with the increase in t.

It is easy to see that with the help of Eq. �20b�, D�t� can
be expressed in terms of B�t�, which allows one to transform
Eq. �19b� into a closed equation for B�t�,

Ḃ = 2B2 + D�t0�exp
6�
t0

t

dt�B�t��� . �21�

After making a replacement

B�t� = −

̇

2

, �22�

Eq. �21� is reduced to an equation of the Newton’s type,
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�̈ +
�

�2 = 0, �23�

where ��2D�t��3�t� is an integral of motion which does not
depend on t.

Equation �23� can be easily integrated which allows
one to ascertain that its general solution can be written as
��t�=�0���t− t0� /L��, where t0 and �0���t0� are arbitrary
constants,

L� =
�

4�D�t0��1/2 �24�

plays the role of the characteristic time scale, and ���� is an
even function of its argument implicitly defined in the inter-
val −1���1 by equation


��1 − �� + arccos 
� =
�

2
��� . �25�

With the increase of ��� from 0 to 1, ���� monotonically
decreases from 1 to 0. In particular, on approaching �= �1,
the behavior of ���� is given by

���� � ��3�/4��1 − �����2/3. �26�

Since it is clear from the form of Eq. �22� that the constant
�0 drops out from the expression for B�t�, one without the
loss of generality can set �0=1 and

��t� = �� t − t0

L�

� . �27�

The functions A�t�, B�t�, C�t�, and D�t� can be then ex-
pressed in terms of ����t� as

A�t� = A0 + sgn�t − t0�
C0

D0
1/2arccos 
� , �28a�

B�t� = sgn�t − t0��D0�1 − ��/�3�1/2, �28b�

C�t� = C0/� , �28c�

D�t� = D0/�3, �28d�

where A0=A�t0�, C0=C�t0�, and D0=D�t0�.
Thus we have found an exact solution of Eqs. �15� in

which f�t ,x� is maximal at x=0 �for t� t0� and the value of
f�t ,0� monotonically grows with the increase in t. However,
the optimal fluctuation also have to satisfy particular bound-
ary conditions. The modifications of the solution given by
Eqs. �27� and �28� compatible with two different types of
initial conditions, free and fixed, are constructed in Secs. V
and VI, respectively.

V. FREE INITIAL CONDITION

When the initial end point of a polymer �at t=0� is not
fixed �that is, is free to fluctuate�, the boundary condition at
t=0 can be written as z�0,x�=1 or

f�0,x� = 0.

Apparently, this condition is compatible with Eq. �18a� and
in terms of functions A�t� and B�t� corresponds to

A�0� = 0, B�0� = 0, �29�

from where �̇�0�=0 and t0=0. However, it is clear that the
solution described by Eqs. �27�–�29� cannot be the optimal
one because it does not respect condition �14� which has to
be fulfilled at t=L. Moreover, this solution corresponds to an
infinite action and the divergence of the action is coming
from the regions where potential V�t ,x� is negative, which
evidently cannot be helpful for the creation of a large posi-
tive fluctuation of f�t ,0�.

From the form of Eqs. �1� and �11�, it is clear that any
region where V�t ,x��0 cannot increase the energy of a
string but makes a positive contribution to the action. There-
fore, in a really optimal fluctuation with F�0, potential
V�t ,x� should be either positive or zero. In particular, since
just the elastic energy of any configuration x�t� which some-
where crosses or touches the line

x��t� = �2F�L − t�/J�1/2 �30�

and at t=L ends up at x�L�=0 is already larger than F, there
is absolutely no reason for V�t ,x� to be nonzero at least for
�x��x��t�.

It turns out that the exact solution of the saddle-point
equations �15� in which potential V�t ,x� satisfies boundary
condition �14� and constraint V�t ,x��0 can be constructed
on the basis of the solution found in Sec. IV just by cutting
the dependences �18� at the points

x = � X�t�, X�t� � 
C�t�
D�t��1/2

= �C0

D0
�1/2

��t� , �31�

where V�t ,x� is equal to zero, and replacing them at
�x��X�t� by a more trivial solution of the same equations
with V�t ,x��0 which at x= �X�t� has the same values of
f�t ,x� and u�t ,x� as the solution at �x��X. Such a replace-
ment can be done because the flow of V through the
moving point x=X�t� in both solutions is equal to zero. In
accordance with that, the integral of V�t ,x� over the interval
−X�t��x�X�t� does not depend on t. It is clear from Eq.
�31� that X�t� is maximal at t= t0 and at t� t0 monotonically
decreases with the increase of t.

The form of f�t ,x� at �x��X�t� is then given by

f�t,x� = f�t,X�t�� + J�
X�t�

�x�

dx�u0�t,x�� , �32�

where u0�t ,x� is the solution of Eq. �17� with zero right-hand
side in the region x�X�t� which at x=X�t� satisfies boundary
condition

u0�t,X�t�� = v�t� . �33�

In Eq. �33�, we have taken into account that in the solution
constructed in Sec. IV u�t ,X�t��=−2B�t�X�t� coincides with
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v�t� =
dX

dt
= �C0

D0
�1/2

�̇ = − 2
C0��−1 − 1� , �34�

the velocity of the point x=X�t�. This immediately follows
from Eq. �22� and ensures that the points where spacial de-
rivatives of u�t ,x� and V�t ,x� have jumps always coincide
with each other. It is clear from Eq. �34� that v�t0�=0,
whereas at t� t0, the absolute value of v�t��0 monotoni-
cally grows with the increase in t.

Since Eq. �17� with vanishing right-hand side implies that
the velocity of any Lagrangian particle does not depend on
time, its solution satisfying boundary condition �33� can be
written as

u0�t,x� = v���t,x�� , �35�

where function ��t ,x� is implicitly defined by equation

x = X��� + �t − ��v��� . �36�

Monotonic decrease of v����0 with the increase in � en-
sures that in the interval X�t��x�X0�X�t0�, Eq. �36� has a
well-defined and unique solution which at fixed t monotoni-
cally decreases from t at x=X�t� to 0 at x=X0. In accordance
with that, u0�t ,x� as a function of x monotonically increases
from v�t��0 at x=X�t� to 0 at x=X0. For free initial condi-
tion �implying t0=0�, the form of the solution at x�X0 re-
mains the same as in the absence of optimal fluctuation, that
is, u0�t ,x�X0��0. The fulfillment of the inequality
�u0�t ,x� /�x�0 in the interval x�X�t� demonstrates the ab-
sence of any reasons for the formation of additional singu-
larities �such as shocks�, which confirms the validity of our
assumption that the form of the solution can be understood
without taking into account viscous terms in saddle-point
equations �5� and �12�.

Substitution of Eqs. �35� and �36� into Eq. �32� and appli-
cation of Eqs. �15a� and �17� allow one to reduce Eq. �32� to

f�t,x� =
J

2
�

0

��t,x�

d���t − ���
dv2����

d��
�37�

from where it is immediately clear that on approaching
x=X0, where ��t ,x� tends to zero, f�t ,x� also tends to zero,
so that at �x��X0, the free energy f�t ,x� is equal to zero �that
is, remains exactly the same as in the absence of optimal
fluctuation�. However, for our purposes, the exact form of
the solution at �x��X�t� is of no particular importance be-
cause this region does not contribute anything to the action.

It is clear that the compatibility of the constructed
solution with condition �14� is achieved when the interval
�−X�t� ,X�t�� where the potential is nonvanishing shrinks to a
point. This happens when the argument of function � in Eq.
�27� is equal to 1, that is when

t0 + L� = L , �38�

which for t0=0 corresponds to L�=L and

D0 = � �

4L
�2

. �39�

On the other hand, Eq. �28a� with A0=0 gives A�L�
= �� /2�C0 /D0

1/2=2LC0. With the help of the condition

A�L�=F /J following from Eq. �13�, this allows one to con-
clude that

C0 =
F

2JL
. �40�

Thus, for free initial condition, the half width of the re-
gion where the optimal fluctuation of a random potential is
localized is equal to

X0 = �C0

D0
�1/2

=
2

�
�2FL

J
�1/2

�41�

at t=0 �when it is maximal� and monotonically decreases
to zero as X�t�=X0��t /L� when t increases to L. On
the other hand, V�t ,0�, the amplitude of the potential,
is minimal at t=0 �when it is equal to F /2L� and mono-
tonically increases to infinity. In the beginning of this sec-
tion, we have argued that V�t ,x� has to vanish at least for
�x��x��t�= �2F�L− t� /J�1/2 and indeed it can be checked that
X�t��x��t� at all t, the maximum of the ratio X�t� /x��t� being
approximately equal to 0.765.

In the case of free initial condition, the optimal fluctuation
of a random potential at T=0 has to ensure that E�x0�, the
minimum of H�x�t�� for all string’s configurations with
x�0�=x0 and x�L�=0, for all values of x0 should be equal or
larger than F. In particular, for any x0 from the interval
�x0��X0 where the potential is nonzero, the corresponding
energy E�x0� has to be exactly equal to F, otherwise there
would exist a possibility to locally decrease the potential
without violating the condition E�x0��F.

The configuration of a string, x�t�, which minimizes
H�x�t�� in the given realization of a random potential for the
given values of x0 and x�L�, at 0�x�L has to satisfy equa-
tion

− J
d2x

dt2 +
�V�t,x�

�x
= 0, �42�

which is obtained by the variation of Hamiltonian �1� with
respect to x. It is not hard to check that for the optimal
fluctuation found above, the solution of this equation for an
arbitrary x0 from the interval −X0�x0�X0 can be written as

x�t� =
x0

X0
X�t� . �43�

All these solutions have the same energy, E�x0�=F.
The value of the action corresponding to the optimal fluc-

tuation can be then found by substituting Eqs. �18b�, �28c�,
and �28d� into the functional �11�, where the integration over
dx should be restricted to the interval −X�t��x�X�t�, which
gives

Sfree =
8

15

C0
5/2

D0
1/2

J2

U0
�

0

L dt

��t�
=

4�

15

C0
5/2

D0

J2

U0
. �44�

The integral over dt in Eq. �44� can be calculated with the
help of replacement dt /�=d� / ���̇� and is equal to
� /2D0

1/2. Substitution of relations �39� and �40� allows one to
rewrite Eq. �44� in terms of the parameters of the original
system as
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Sfree�F,L� = K
F5/2

U0J1/2L1/2 , K =
8
2

15�
. �45�

The exponents entering Eq. �45� have been earlier found
in Ref. �13� from the scaling arguments based on the as-
sumption that for large L, the form of the optimal fluctuation
involves a single relevant characteristic length scale with the
dimension of x which algebraically depends on the param-
eters of the system �including L� and grows with the increase
of L �27�. The analysis of this section has explicitly con-
firmed this assumption and has allowed us to find the exact
value of the numerical coefficient K.

Since the characteristic length scale of the solution we
constructed is given by X0�X�t0���FL /J�1/2, the neglect
of viscosity 	 remains justified as long as the character-
istic relaxation time corresponding to this length scale
�rel�X0

2 /	�FL /T is much larger than the time scale of this
solution L, which corresponds to

F � T . �46�

Another condition for the validity of Eq. �45� is the condition
for the direct applicability of the optimal fluctuation ap-
proach. One can disregard any renormalization effects as
long as the characteristic velocity inside optimal fluctuation
is much larger �14� than the characteristic velocity of equi-
librium thermal fluctuations at the length scale xc�T3 /JU0,
the only characteristic length scale with the dimension of x
which exists in the problem with �-functional correlations
�that is, can be constructed from T, J, and U0�. In terms of F,
this condition reads

F � U0
2JL/T4. �47�

It is easy to check that the fulfillment of conditions �46� and
�47� automatically ensures S�1, which also is a necessary
condition for the applicability of the saddle-point approxima-
tion.

For L�Lc, where Lc�T5 /JU0
2 is the only characteristic

length scale with the dimension of L which exists in the
problem with �-functional correlations, condition �46� auto-
matically follows from condition �47� which can be rewritten
as F� �L /Lc�T. Thus, for a sufficiently long string �with
L�Lc�, the only relevant restriction on F is given by Eq.
�47�.

VI. FIXED INITIAL CONDITION

When both end points of a string are fixed �x�0�=x0,
x�L�=xL�, one without the loss of generality can consider the
problem with x0=xL. Due to the existence of so-called tilting
symmetry �28�, the only difference between the problems
with x0=xL and x0�xL consists in the shift of the argument
of PL�F� by �F�J�xL−x0�2 /2L. For this reason, we con-
sider below only the case x0=xL=0.

When a string is fastened at t=0 to the point x=0, in
terms of z�t ,x�, the boundary condition at t=0 can be written
as z�0,x����x�. In such a case, the behavior of f�t ,x� at
t→0 is dominated by the elastic contribution to energy,
which allows one to formulate the boundary condition in
terms of f�t ,x� as �14�

lim
t→0

�f�t,x� − f �0��t,x�� = 0, �48�

where f �0��t ,x�=Jx2 /2t is the free energy of the same system
in the absence of a disorder. Since we are explicitly analyz-
ing only the T→0 limit, we omit the linear in T contribution
to the expression for f �0��t ,x� which vanishes in this limit.
The fulfillment of condition �48� can be ensured, in particu-
lar, by setting

f��,x� = f �0���,x� = Jx2/2� , �49�

which corresponds to suppressing the noise in the interval
0� t��, and afterwards taking the limit �→0. Naturally, the
free initial condition also can be written in the form �48� but
with f �0��t ,x�=0.

Quite remarkably, initial condition �49� is compatible with
the structure of the solution constructed in Sec. IV and in
terms of functions A�t� and B�t� corresponds to

A��� = 0, B��� = − 1/2� . �50�

Substitution of Eqs. �24�, �26�, and �27� into Eq. �28b� allows
one to establish that for ��L�, the condition B���=−1 /2�
corresponds to

t0 − L� � �/3. �51�

Exactly like in the case of free initial condition �see Sec.
V�, we have to assume that at �x��X�t�, the dependences
�18a� and �18b� are replaced, respectively, by Eq. �32� and
V�t ,x�=0. The compatibility with condition �14� is achieved
then when the interval −X�t��x�X�t� where the potential is
nonvanishing shrinks to a point, the condition for which is
given by Eq. �38�. A comparison of Eq. �38� with Eq. �51�
allows one to conclude that for initial condition �50�
L��L /2−� /6 and t0�L /2+� /6, which after taking the
limit �→0 gives

L� = L/2, t0 = L/2. �52�

This unambiguously defines the form of the solution for the
case of fixed initial condition.

In this solution, the configuration of V�t ,x� is fully sym-
metric not only with respect to the change of the sign of x but
also with respect to replacement

t ⇒ L − t . �53�

The origin of this property is quite clear. In terms of an
elastic string, the problem we are analyzing now is fully
symmetric with respect to replacement �53�, therefore it is
quite natural that the spacial distribution of the potential in
the optimal fluctuation also has to have this symmetry.

Since we are considering the limit of zero temperature
when the free energy of a string is reduced to its energy,
which in its turn is just the sum of the energies of the two
halves of the string, the form of the potential V�t ,x� in the
symmetric optimal fluctuation can be found separately for
each of the two halves after imposing free boundary condi-
tion at t=L /2. This form can be described by Eqs. �27�,
�28c�, and �28d� with L�= t0=L /2, where the values of C0
and D0 can be obtained from Eqs. �40� and �39�, respectively,
by replacement
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F ⇒ F/2, L ⇒ L/2. �54�

The value of the action corresponding to the optimal fluc-
tuation can be then found by making the same replacement
in Eq. �45� and multiplying the result by the factor of 2,

Sfix�F,L� = 2Sfree�F/2,L/2� =
1

2
Sfree�F,L� . �55�

Naturally, the conditions for the applicability of Eq. �55� are
the same as for Eq. �45� �see the two last paragraphs of Sec.
V�. The claim that the optimal fluctuation is symmetric with
respect to replacement �53� and therefore both halves of the
string make equal contributions to its energy can be addition-
ally confirmed by noting that the sum

Sfree�F�,L/2� + Sfree�F − F�,L/2� �56�

is minimal when F�=F−F�=F /2.
Like in the case of free initial condition, the form of the

optimal fluctuation is such that the whole family of extremal
string’s configurations satisfying Eq. �42� is characterized by
the same value of energy, E�H�x�t��=F. Formally, this fam-
ily again can be described by Eq. �43� where x0 now should
be understood not as x�0� but more generally as x�t0�.

VII. GENERALIZATION TO OTHER DIMENSIONALITIES

The same approach can be applied in the situation when
polymer’s displacement is not a scalar quantity but a
d-dimensional vector x. In such a case, the expressions for
the action and for the saddle-point equations retain their
form, where now operator � should be understood as vector
gradient. A spherically symmetric solution of Eqs. �15� can
be then again found in the form �18� with x2�x2.

For arbitrary d substitution of Eqs. �18� into Eqs. �15�
reproduces Eqs. �19� in exactly the same form, whereas Eqs.
�20� are replaced by

Ċ = 2dBC , �57a�

Ḋ = �4 + 2d�BD . �57b�

A general solution of Eqs. �19� and �57� can be then written
as

A�t� = A0 + sgn�t − t0�
C0I−��,d�
2�dD0�1/2 , �58a�

B�t� = sgn�t − t0�
D0

d

1 − �d

�2+d �1/2

, �58b�

C�t� = C0/�d, �58c�

D�t� = D0/�2+d, �58d�

where

� � ��t� = �� t − t0

L�

� , �59�

with

L� =
I+�0,d�

2�dD0�1/2 �60�

and ���� is an even function of its argument implicitly de-
fined in the interval −1���1 by equation

�I+��,d�� = I+�0,d���� . �61�

Here, I��� ,d� stands for the integral

I���,d� = �
�d

1

dq
q1/d−1�1/2

�1 − q�1/2 , �62�

in accordance with which I��0,d� is given by the Euler beta
function

I��0,d� = B�1

2
,
1

d
�

1

2
� =

��1

2
���1

d
�

1

2
�

��1

d
+

1

2
�

1

2
� . �63�

From the form of Eqs. �61� and �62�, it is clear that with the
increase of ��� from 0 to 1, the function ���� monotonically
decreases from 1 to 0. It is not hard to check that at d=1,
Eqs. �58� and �61� are reduced to Eqs. �28� and �25�, respec-
tively.

Exactly like in the case d=1, for free initial condition, one
gets t0=0, L�=L, A0=0, and A�L�=F /J from where

C0 =
2 − d

2

F

JL
, D0 =

1

d

 I+�0,d�

2L
�2

. �64�

On the other hand, Eq. �44� is replaced by

Sfree =
4�d

d�d + 2��d + 4�
C0

1+d/2

D0
d/2

JF

U0
, �65�

where �d=2�d/2 /��d /2� is the area of a d-dimensional
sphere. Substitution of Eqs. �64� into Eq. �65� then gives

Sfree�F,L� = Kd
F2+d/2

U0Jd/2L1−d/2 , �66a�

with

Kd =
8�2 − d�1+d/2�2d�d/2−1

�d + 2��d + 4���d/2� 
 ��1/d + 1�
��1/d + 1/2��d

. �66b�

Naturally, at d=1 numerical coefficient Kd coincides with
coefficient K in Eq. �45�. Like in the case of d=1, the value
of the action for fixed initial condition, x�t=0�=0, can be
found by making in Eq. �66a� replacement Eq. �54� and mul-
tiplying the result by the factor of 2, which gives

Sfix�F,L� = 2Sfree�F/2,L/2� = �1

2
�d

Sfree�F,L� . �67�

The exponents entering Eq. �66a� and determining the de-
pendence of Sfree on the parameters of the system have been
earlier found in Ref. �14� from the scaling arguments based
on the assumption that for large L, the form of the optimal
fluctuation involves a single relevant characteristic length
scale with the dimension of x which algebraically depends

EXPLICIT SOLUTION OF THE OPTIMAL FLUCTUATION … PHYSICAL REVIEW E 80, 031107 �2009�

031107-7



on the parameters of the system �including L� and grows
with the increase of L �27�. However, the analysis of this
section reveals that this length scale, X0= �C0 /D0�1/2, tends to
zero when d approaches 2 from below, as well as the value of
the action given by Eqs. �66�.

This provides one more evidence that at d�2, the prob-
lem with purely delta-functional correlations of a random
potential becomes ill defined �29� and has to be regularized
in some way, for example, by introducing a finite correlation
length for the random potential correlator. In such a situation,
the geometrical size of the optimal fluctuation is determined
by this correlation length �14� and its shape is not universal,
that is, depends on the particular form of the random poten-
tial correlator. Thus, the range of the applicability of Eqs.
�66� is restricted to 0�d�2 and includes only one physical
dimension, d=1.

VIII. CONCLUSION

In the current work, we have investigated the form of
PL�F�, the distribution function of the free energy of an elas-
tic string with length L subject to the action of a random
potential with a Gaussian distribution. This has been done in
the framework of the continuous model traditionally used for
the description of such systems, Eq. �1�. Our attention has
been focused on the far-right tail of PL�F�, that is on the
probability of a very large positive fluctuation of free energy
F in the regime when this probability is determined by the
probability of the most optimal fluctuation of a random po-
tential leading to the given value of F.

We have constructed the exact solution of the nonlinear
saddle-point equations describing the asymptotic form of the
optimal fluctuation in the limit of large F when this form
becomes independent of temperature. This has allowed us to
find not only the scaling from of S�F�=−ln�PL�F�� but also
the value of the numerical coefficient in the asymptotic ex-
pression for S�F�.

The solution of the problem has been obtained for two
different types of boundary conditions �corresponding to fix-
ing either one or both end points of a string� and for an
arbitrary dimension of the imbedding space 1+d with d from
the interval 0�d�2 �d being the dimension of the displace-
ment vector�. Quite remarkably, in both cases, the asymptotic
expressions for S�F�, Eqs. �66� and �67�, are rather universal.
In addition to being independent of temperature, they are
applicable not only in the case of �-correlated random poten-
tial explicitly studied in this work, but also �for a sufficiently
large L� in the case of potential whose correlations are char-
acterized by a finite correlation radius. Note that our results
cannot be compared to those of Brunet and Derrida �30�
because these authors have considered a very specific regime
when the transverse size of a system �with cylindrical geom-
etry� scales in a particular way with its length L.

Due to the existence of the equivalence �2� between the
directed polymer and KPZ problems, the distribution func-
tion of the directed polymer problem in situation when only
one of the end points is fixed �and the other is free to fluc-
tuate� describes also the fluctuations of height �13,14� in the
d-dimensional KPZ problem in the regime of nonstationary
growth which have started from a flat configuration of the
interface, L being the total time of the growth. The only
difference is that the far-right tail of PL�F� studied in this
work in the traditional notation of the KPZ problem �3� cor-
responds to the far-left tail of the height distribution function.
In terms of the KPZ problem, the independence of the results
on temperature is translated into their independence on vis-
cosity.
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