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A tunnel junction shunted by a normal resistance is studied. The band width at
zero external current and the tunneling probability as a function of the external
current under incoherent tunneling conditions are found for the limiting case of a
large viscosity.

According to Ambegaokar ef al.,’ a tunnel junction which is shunted by a normal
resistance can be described by an effective Euclidean action

_pmydeyt ~ 4n L sin? {[o)-e()]/4}
Slo@1=sat [—-2—(-37) Vcosy Fso}r — JJdtde (1) y
(N

which depends on a single variable @, the phase difference at the junction. Here
m = #C /4e’ (C is the capacitance of the junction) is the effective mass, 7 = #/4¢’R
(R is the shunt resistance) is the effective viscosity, V' =1_./2¢ (I, is the critical
current), and F =1 /2e (I is the external current). The interaction with the micro-
scopic degrees of freedom is manifested in (1) as a term which is nonlocal with respect
to time and which depends on @(#) — @(¢') periodically.

Guinea and Schon® studied the model (1) at F=0 and showed that its large
viscosity, in contrast with a similar system with a nonlocal dissipation quadratic in
‘o(t) — @(t’), does not lead to a complete localization: The wave function remains
smeared either for all even or for all odd minima of the periodic potential, because the
tunneling to the nearest minimum is suppressed completely, while the tunneling to the
minimum next to the nearest minimum has a finite amplitude.

The approximate transformations used in Ref. 2 upon changing from (1) to an
equivalent two-level system can be used only when m¥V>7?, 1.

We will analyze below another part of the semiclassical approximation which is
valid and which corresponds to the large-viscosity limit,

n>>mMY? In(n*/mV). (2)

Apart from the formation of the band at F = 0, we will also consider its destruction by
the external current and the transition to the incoherent tunneling. The temperature is
assumed to be zero.

At F=0and 750 action (1) has not only an extremum that connects the neigh-
boring minima of the potential (ordinary instanton) but also an extremum that con-
nects the minima which are situated next to the neighboring minima (a double instan-
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ton). The amplitude of the tunneling to the minimum that comes after the nearest
minimum is determined by the action along this path (whose magnitude is finite) and
oy the fluctuations in its neighborhood. The exact form of the extremum ®(¢) can be
found only in the large-viscosity limit (m, V = 0):

® (t)=4 arctan Qf, (3)

where (1 is arbitrary for the time being.

Substituting (3) in (1), we find
S[D@)]=4n(n+mQ+V/Q),

which means that Q = (¥V/m)"/? and S,=S(Q) = 47y + 87 (mV)'/2

To evaluate the coefficient of the exponential function, we must find the eigenval-
ues of the operator (82S/5g02)¢f‘,,([). In the same approximation (m, V'=0) the
equation for the eigenfunctions

”

J a’ 1 3¢ 29 - ar’ 9~ ‘_AN(O
ntf mot—t 9t 1+Qe)? o= s T 1+(Q¢t) w()JL v

is essentially the same as that in the system with a quadratic dissipation for m =0,
V #£0 (Ref. 4). This equation has the following solutions:

Do) =1/ (1 +Q2%); Ag= 0
:E;i‘e (f)=exp [ zi (et +arctan Q) ]; A, =me (e=0).

The displacement of the double instanton as a whole along the time scale corresponds
to the mode @,(¢) and the change in the parameter ) corresponds to the mode
@4()(1) _gfbfo(t)'

Having estimated the shift in the eigenvalues for the finite values of m and V, we
find, after a regularization, the amplitude A of the tunneling to the minimum of the
potential that immediately follows the nearest minimum:

27
A~ 7;;?/3574_5 exp (—So)
which determines the band width.

The interaction of the double instantons is inversely proportional to the square of
the distance between them 7 (with respect to the logarithmic interaction, they are
dipoles). For 0 < F &V the action along the double-instanton path which corresponds
to the tunneling to a lower-lying minimum among those that follow the nearest mini-
ma is

S(1)=28,-16mcn(27)? —4nFr, (4)

where ¢=2 for 1<Qr<(9?/mV)"* and c=1 for Qr> (n*>/mV)'* Action (4)
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reaches the extremum
S*=2So—l27r(an2/S22)”3 (3) %

at 7, = 2(cn/FQ?)'?» Q7" [here and below e=c(7, )].
If the condition (J3S/97°), _ . >7,° is satisfied, ie., if

F>>Fy~[ (2410 2 Q,

the fluctuations around the extremal path, which we are considering here, will be
small. This circumstance allows us to find from this path, in the exponential approxi-
mation, the probability for the tunneling to the minimum that follows the nearest
minimum, which is an incoherent minimum in this case (a purely exponential relaxa-
tion):

P, =AYen/ 2792 F)'3 exp [ 12 n(e n F?/ Q%)) (6)

The quantity £, determines the current at which the band nature of the motion is
destroyed and at which a transition to an incoherent tunneling occurs. For Eq. (6) to
have a broad range of applicability: F,,<F<V, the condition F,<V must hold. As a
result, an additional condition is imposed on #%: 7> (247) ~*(m V) !, which is satis-
fied, however, in a large part of the region (2).

Because of the logarithmic nature of the interaction of the ordinary (single)
instantons, at /= 0 the tunneling to the nearest minimum is suppressed completely.
At F>0 an incoherent tunneling occurs to a lower-lying minimum of the nearest §
minima with a probability P, «« F*"7—!_ A comparison of the action along the extre-
mal path with (5) shows that P, is equal to P, at In(F /¥V) ~ — 277 and is greater than
P, at higher values of the external current. At typical values of the parameters we have
P, > P, over the entire range of applicability of Eq. (6), greatly decreasing the possibil-
ity of an experimental study of incoherent tunneling to the minimum of the potential
that lies next to the nearest minimum.
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