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Abstract 

A Josephson junction array with geometrical irregularities in presence of perpendicular magnetic field can be described 
by a two-dimensional XY-model with random phase shift. If the magnitude of the field corresponds to having on the 
average the integer number of flux quanta per plaquette, the problem can be discussed in terms of a two-dimensional 
Coulomb gas interacting with a random potential the correlations of which diverge logarithmically. In the present work 
we discuss the phase diagram of such system and show that the low-temperature reentrant transition into disordered 
phase is not possible. Our conclusions are in agreement with the results of both real and computer experiments. 

1. Introduction 

A Josephson junction array in a perpendicular 
magnetic field can be described by the Hamiltonian 

H = - Y ~cos(~o~ - t p j , -  Ajj,), (1) 
jj, 

where tp~ is the order parameter  phase on j th  super- 
conducting island and summation is performed 
over all the junctions which connect the islands. 
The phase shift on each junction A~j, is determined 
by the vector potential of the magnetic field and in 
a typical experimental situation can be ascribed 
entirely to the external field [1]. 

If the magnetic field is absent or its value corres- 
ponds to the integer number of flux quanta per 
plaquette, all variables A~j, can be put equal to zero. 

* Corresponding author. 

In that case the Hamiltonian (1) reduces to the 
Hamiltonian of the ordinary two-dimensional X Y- 
model which demonstrates a phase transition be- 
tween a quasi-ordered low-temperature phase in 
which all vortices are bound in pairs and a dis- 
ordered high-temperature phase in which vortex 
pairs are debound [2-4]. 

But if the array has geometrical irregularities 
(the random displacements in the positions of the 
junctions) it becomes impossible to get rid of the 
phase shifts A~j, even if the average flux per pla- 
quette is integer. In such case one has to treat A j j, 

as quenched random variables. In the following 
we assume that the random variables A~j, are inde- 
pendent from each other and obey the Gaussian 
statistics with 

A~, = 0, Aj~., = a. (2) 

Here and further on the average over disorder is 
denoted by an overbar. 

S0921-4526/96/$15.00 (C 1996 Elsevier Science B.V. All rights reserved 
PII S092 1-4526(96)00206-2 



S. E. Korshunov, T. Nattermann / Physica B 222 (1996) 280 286 281 

Model (1) has been introduced by Rubinstein et 
al. [5] for the description of a planar magnet with 
random Dzyaloshinskii-Moriya interaction and 
only afterwards it has been suggested that the same 
model can be applied for the description of the 
Josephson junction array with positional disorder 
in presence of perpendicular magnetic field [6]. The 
statistical mechanics of vortices in model (1) can be 
described with the help of a Coulomb gas Hamil- 
tonian [5]: 

1 2 HcG = 2 ~,r ,SrGO(r --  r ' ) s , ,  --  2r V(r )Sr '  (3) 

where the integer variables s, (describing the 
topological charges of the vortices) are defined on 
the sites r of a dual lattice. The presence of ran- 
dom variables A#, manifests itself in the appear- 
ance of a random potential V(r) which is linearly 
related to A#,. Therefore, if the distribution of 
A~j, is Gaussian then the distribution of V(r) is also 
Gaussian. 

In terms of the Coulomb gas charges each of the 
random variables A#, corresponds to a quenched 
dipole. Since a potential of a dipole in two dimen- 
sions decays as 1/R, the fluctuations of the potential 
created by the random dipoles uniformly distrib- 
uted over whole plane have to diverge logarithmi- 
cally [5]: 

d ( r l 2 ) -  [ V ( r l ) -  V(r2)] 2 ~ 4rt J2alnlr121, 

r12 = r l  - r z .  (4) 

The expression V(rl) - V(r2) which enters Eq. (4) 
can be also interpreted as a random contribution to 
the energy of a neutral vortex pair (with one vortex 
at point rl and the other at point r2) and therefore 
Eq. (4) defines the width of the distribution of this 
quantity. 

The function Go(r) describing the interaction of 
the vortices remains the same as in absence of 
disorder. In contrast to the energy of a single 
vortex which is logarithmically divergent the en- 
ergy of a neutral vortex pair g(r12 ) is finite and for 
the large separation between the vortices depends 

logarithmically on the separation 

9(r12) - Go(r = 0) - Go(r12) ~ 2~Jln[r121. (5) 

In Eqs. (4) and (5) and further on we assume that 
the lattice constant is equal to one. 

The analysis of model (1) developed by Rubin- 
stein et al. [5] is based on the consideration of 
the renormalization of vortex interaction and ran- 
dom potential distribution (in the lowest order in 
vortex fugacity). The main conclusions of Ref. [5] 
are that for large disorder the ordered phase is 
always destroyed, whereas for small disorder it 
should exist but with the decrease in temperature 
the reentrant transition to the disordered phase 
should always take place. Only the first of these 
conclusions has been confirmed (both in the experi- 
ments on Josephson junction arrays [7] and in 
numerical simulations [7-9]) whereas the reentrant 
transition to the disordered phase has never been 
observed. 

Recently, it has been shown [10] that the consid- 
eration of the higher-order corrections to the calcu- 
lation of Rubinstein et al. [5] reveals the appear- 
ance of a new divergence in each order of the 
expansion and leads to the further suppression of 
the domain of stability of the ordered phase until it 
completely disappears. This can mean that the or- 
dered phase (in which all the vortices are supposed 
to be bound in pairs) is always destroyed or that the 
correct description of the system should be based 
on some other approach [10]. On the other hand, 
Ozeki and Nishimori [11] have proved with the 
help of the formal gauge transformation that if the 
ordered phase of the XY-model with random phase 
shift does exist then the phase diagram cannot 
include a reentrant transition into the disordered 
phase. Unfortunately, this approach also does not 
allow to make any conclusions about the existence 
of the ordered phase. 

In the present work we briefly describe two dif- 
ferent approaches which demonstrate that if the 
disorder is sufficiently weak the ordered phase 
should be stable both at zero and at low enough 
temperatures. One of them consists in a simple 
comparison of the proper (elastic) energy of a vor- 
tex with a maximal energy gain it can acquire due 
to presence of disorder, whereas the other is based 
on the systematic calculation of the corrections to 
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vortex interaction and random potential distribu- 
tion due to presence of bound vortex pairs. The 
main improvement with respect to the analysis of 
Rubinstein et al. [5J is that instead of discussing the 
lowest-order corrections in vortex fugacity, we con- 
sider the lowest-order corrections in vortex pair 
concentration (in a disordered system they do not 
concide). Such approach seems to be equivalent to 
the effective resummation of the infinite set of diver- 
gencies one encounters in the frame-work of the 
fugacity expansion [10] and leads to the drastic 
consequences for the shape of phase diagram from 
which the reentrant transition to the disordered 
phase is eliminated. Some other arguments in fa- 
vour of the same conclusions can be found in an 
earlier publication [12]. A more detailed presenta- 
tion of the approach developed in Section 3 can be 
found in Ref. [13]. 

given potential realization (that is with the maximal 
energy gain V,, the vortex can acquire by finding 
the suitable position in the array). 

An estimate for this quantity can be constructed 
by neglecting the correlations between the values of 
a random potential on different sites. This corres- 
ponds to considering N = L 2 independent random 
variables V (r) all of which are characterized by the 
same Gaussian distribution 

p ( V )  = = e x p  - (8) 
x/2= 5 ~j2 

the width of which is given by Eq. (7) and therefore 
depends on the number of these variables. 

The distribution of V,. is then given by 

if ,l P (V , , )  = N p ( V m )  d V  p ( V  
oc, 

2. A single vortex consideration 

A phase transition in a regular X Y-model can be 
associated with an appearence of free vortices due 
to thermal fluctuations. We start our discussion of 
the disordered system by considering if the presence 
of logarithmically divergent random potential can 
induce the spontaneous creation of vortices even at 
zero temperature. 

In the case of the finite size array (L x L) the 
regular part of the vortex energy can be estimated 
as 

Eo(L)  ~ rt J l n  L,  (6) 

whereas the disorder-induced contribution V to the 
energy of the single vortex is characterized by 
a Gaussian distribution with a width e(L) given by 

5(L) ~ J ~ .  (7) 

Comparison of Eq. (7) with Eq. (6) shows that in the 
limit of L - ,  ~ the typical value of V becomes 
negligible in comparison with Eo(L). 

But this does not mean that the random poten- 
tial cannot induce the spontaneous creation of vor- 
tices. In order to check if the creation of the vortex 
is energetically favourable it is necessary to com- 
pare Eo(L) not with the typical value of V(r)  for the 
given L but with the maximal value of V(r)  for the 

 Lfv IN = d V p ( V )  . (9) 
co 

For N>> 1 the most convenient way to describe the 
form of P(Vm)  consists in looking at 

A(Vm)  =- - In P(Vm) - (N - 1) 
p(0) 

xln  ~ d V p ( V )  - p(O) 

(10) 

The minimum of A(Vm)  [and therefore the max- 
imum of P(V~)] is achieved when 

dA 
- 0 .  (11) 

dVm 

Since for V,.>>5 

dA V,. 
- -  ~ - ( N  - 1)p(Vm) + - -  (12) 
dV,. 5 2 ' 

the solution of Eq. (11) is given by 

[V~)] 2 ~ 2~2 [ ln (N  - 1)-- l n ~ V ~ )  1 

252 lnN. (13) 

On the other hand, the width of the distribution of 
Vm can be estimated by calculating the second 
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derivative of A: 

d2A I 1 ~ (N - 1) p(V~ )) + -fi ~ - -  
dVm[v =v~, 

21nN 
~2 

(14) 

Comparison of Eq. (14) with Eq. (13) shows that 
for N ~ oc the distribution of Vm is rather narrow: 

[ (Vm- V~)2]  ~/2 1 
- -  (15) 

vtOl 2 In N '  m 

and therefore the average value of V,, should be 
very close to Vm): 

V= ~ x/21n Ne,. (16) 

By calculating the next derivative of A it is possible 
to check that the distribution of V,, is not Gaussian. 

Substitution of Eq. (7) into Eq. (16) shows that in 
the considered approximation the average value of 
the maximal energy gain diverges with the size of 
the system logarithmically: 

V~ ~ S x / ~ a l n L ,  (17) 

and therefore the average energy of the vortex cre- 
ated at the most favourable position in the array is 
given by 

E,,(L) =- Eo(L) - V,,(L) ~ ~ J  1 - lnL,(18) 

where a ,  = re/8. 
For  a < a ,  the regular contribution to E,,(L) 

dominates and therefore the creation of the vortex 
requires (in the limit of L ~ ov ) the infinite energy. 
On the other hand, for a > a ,  the addition of the 
vortex to the system can decrease its energy and 
therefore the spontaneous creation of the vortices 
should take place. 

When the correlations of random potential on 
different sites are taken into account they tend to 
decrease the mutual scattering of the random vari- 

ables V(r) and therefore the value of Vm(L) can only 
be decreased. Therefore, the previous calculation 

gives an upper border for V,~ and a lower border for 
Em and suggests that at least for a < a ,  the model is 
stable with respect to spontaneous creation of vor- 
tices by disorder. 

If the real dependence of V,, on L is indeed 
logarithmical but with the smaller prefactor than in 
Eq. (17) this would correspond simply to the shift of 
the critical value of the disorder from n/8 to the 
larger value. On the other hand, if the real depend- 

ence of Vm on L is slower than logarithmic the 
conclusion of a single vortex consideration should 
be that the arbitrarily strong random potential 
cannot induce the creation of vortices. To show 
that this is not the case it is necessary to construct 

the lower border for Vm which also demonstrates 
the logarithmic dependence on L. 

A possible way to do it consists in separating the 
contributions to V(r) from different scales. To this 
end, let us divide our system of N = L 2 sites into 
M>> 1 equal parts and discuss the potential which is 
created inside of each of these subsystems by all the 
other subsystems. To estimate this potential we can 
substitute each of the other M - 1 subsystems by 
a random dipole. The width of the distribution of 

these random dipoles will be x / ' ~ M  times larger 
than the distribution width a 1/z for the original 
random dipoles - the random variables Ass,. But 
since the linear size of each subsystem is larger by 
the same factor (in comparison with the original 
lattice unit) and the potential of a dipole in two 

dimensions decays as 1/R the two factors xflN/M in 
the expression for the potential canceal each other. 
This brings us back to the original problem in 
which the number of sites N is substituted by the 
number of subsystems M. 

So if we now choose the subsystem with the 
largest value of the potential (created inside of it by 
he other subsystems) the average value of this po- 
tential will be given by the same function Vm(l) 
(with I = x/-M) we are trying to estimate. But in the 
current approach we have kept the possibility to 
continue the search of the favourable position in 
array (for the vortex creation) by repeating the 
same procedure again and again. This means that 
at the next step we have to divide our chosen 
subsystem into M parts (sub-subsystems) and then 
choose the one for which the value of the potential 
created by the other subsystems is the largest. This 
adds another term Vm(l) to the value of the poten- 
tial. On the whole, such procedure can be repeated 
l n N / l n M  = lnL/ ln l  times and therefore the 
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average value of the potential at the site which is 
chosen in the end is given by 

V~)(L) In L 
= ~ Vm(1). (19) 

Thus, we have proposed the explicit algorithm 
for the search of the site with large enough potential 
and have found that the average value of the poten- 
tial on this site is logarithmical in the size of the 
system L. Since our algorithm does not allow to 
find the site with the largest value of V( r ) the  
expression (19) provides the lower border for Vm(L). 
This lower border is logarithmical in L and there- 
fore the critical value of disorder a ,  has to be finite. 

All arguing above has been based on comparison 
of different contributions to vortex energy and 
therefore is directly applicable in the case of zero 
temperature. As is well known the temperature of 
the phase transition in the regular system can be 
estimated [3] by comparing the energy of the single 
vortex given by Eq. (6) with its entropy S(L) which 
in absence of the disorder is equal simply to the 
logarithm of the number of possible states (that is of 
the number of lattice sites). The free energy of 
a single vortex is then given by 

F(L) = Eo(L) - TS(L)  <~ (nJ - 2T)In  L, (20) 

and vanishes at T = (r~/2)J which signifies that at 
higher temperatures the thermal fluctuations make 
possible the spontaneous creation of vortices. 

In the case of disordered system the entropy of 
a single vortex is given by 

I (21) 

and since the difference between the values of a ran- 
dom potential in two different points grows with 
the increase of the distance between them, the ex- 
pression (21) can be expected to be dominated by 
some finite vicinity of the point at which V(r) is 
maximal (that is equal to Vm) and therefore S(L) 
cannot grow with the increase in L as fast as In L. 
This means that at small temperatures the critical 
value of the disorder should remain the same as at 
zero temperature. 

3. Vortex pairs unbinding and phase diagram 

A more systematic approach to a phase diagram 
of a Coulomb gas should take into account that the 
presence of bound pairs (or other neutral com- 
plexes of charges) can induce the renormalization of 
the interaction of charges and of their energy [3, 4]. 
This can lead to the shift of the phase transition line 
or to the complete destruction of the ordered phase. 

The renormalized interaction of the charges 
G(R1,  R2) can be defined as a response of the 
system to the introduction of two infinitely small 
test charges el and e2 at points Ra and R2, respec- 
tively. The function G(RI,  R2) can  be shown to 
have a form 

G ( R I , R 2 )  = G o ( R 1 , R 2 )  - ~ Go(Rl  - r l )  
rl , r2 

X Y. (rl, r 2 ) Go (r2 -- R2), (22) 

where 2; (r~, rz) is given by the second derivative of 
the Coulomb gas free energy with respect to the 
potential 

~2 F 
Y~ ( r l '  r2) -- OV(r~)~V(r2)" (23) 

In the lowest order approximation in pair con- 
centration the contributions to the second term in 
Eq. (22) from different vortex pairs are independent 
from each other. Therefore, when calculating this 
correction the interaction between the charges be- 
longing to different pairs can be neglected. To this 
end the partition function of the Coulomb gas can 
be rewritten in the form 

Z ~ -  H (I  -I- W . . . .  - ~ - W r 2 r i ) ,  (24) 
(r~, r2 ) 

where 

w .... =expE o/r  l 

and the product is taken over all pairs of different 
sites on a dual lattice. 

The form of gq. (24) implies that for each pair of 
sites (r~,r2) the three possibilities are considered: 
the absence of any vortex pair, the presence of 
vortex pair with the topological charge + 1 at 
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point rl and - 1 at point r2 and the presence of the 
vortex pair with opposite orientation. The partition 
function (24) takes into account the interaction of 
all the vortices with a random potential and the 
mutual interaction of the vortices belonging to the 
same pair and the only contribution which is ne- 
glected is the interaction between the vortices be- 
longing to different pairs. 

Substitution of the free energy corresponding to 
the partition function (24) into Eq. (23) allows then 
to rewrite the expression for the disorder-averaged 
Fourier transform of ~(ra,r2) as 

Ez(q) = ~ (1 - cosqR)W(R), (26) 
R 

the potential-dependent weight factor W (R, V) be- 
ing of the form 

~ I  w ( R ' V ) - w ( R , - V )  ] (27) 
W (R, V) = ) + w(R, V) + w(R, -- V )  ' 

where w(R, V) is defined by Eq. (25) with 
rl - -  r 2  = R and V(rl) - -  V ( r 2 )  = V. The width of 
the Gaussian distribution for V is given by Eq. (4) 
and also depends on R. 

When only the large-distance behaviour of the 
vortex interaction is important the correlation to 
the interaction can be expressed as a correction to 
the coupling constant J: 

AJ = - rtzJ 2 ~RZW(R). (28) 
R 

In the same approximation of diluted pairs all the 
corrections to the distribution of random potential 
(4) can be absorbed into the renormalization of J, 
whereas the parameter cr describing the strength of 
the disorder remains unrenormalized. 

For R -o oo the result of the averaging W (R, V) 
over disorder is characterized by an algebraic be- 
haviour: 

W ( R )  ~ B ( T ) R  -K(T) (29) 

but the temperature dependence of the para- 
meters in Eq. (29) is essentially different for 
T > T,(J, a) - 2Ja when the results of Rubinstein 

et al. [5] are reproduced and for T < T,(J,~r): 

r nT._~ZLT~_ 1 

B(T)= tsin(~T./T.);j2ax/~'~_ fOrfor TT >< T,,T*' 

J" ~ for T < T , ,  
K(T) = ~2~(~--@) for T > T,.  (30) 

The more attentive consideration shows that W(R) 
always decreases with a decrease in temperature 
and therefore there are no reasons to expect a reen- 
trant transition. 

Substitution of Eqs (29) and (30) into Eq. (28) 
shows that for T > T , U , a )  the lowest-order cor- 
rection to the coupling constant becomes divergent 
on the line 

T = T+ (J, a) = 2J~,(1 + x/1 - cr/cr,) (31) 

(the line CD in Fig. 1), whereas at low temperatures 
IT < T,(J,o-)] the domain of convergence is re- 
stricted by the line a = a ,  = re/8 (the line AC in 
Fig. 1) which is parallel to the temperature axis. 

That defines the domain of stability of the or- 
dered phase in the limit of zero fugacity (infinite 
core energy). For finite or zero core energy the 
renormalization effects should be taken into ac- 
count and the domain of the ordered phase will 
shrink. But since only the coupling constant J is 
renormalized and the disorder strength ~r remains 
the same the position of the low-temperature part 
of the phase transition line (a = %) will not be 
changed, whereas the other part of the phase 
transition line (CD) will be shifted to the lower 
temperatures (BE). 

Remarkably, the single vortex consideration of 
the previous section also leads to the conclusion 
that at low temperature the critical value of 
a should not depend on temperature. Moreover, 
the critical values of ~r predicted by two methods 
coincide with each other. Since Ozeki and 
Nishimori [11] have proved that the phase 
transition line should be parallel to the temperature 
axis for T < J~r, we have shown in Fig. 1 that the 
singular point C is shifted by the renormalization 
effects to the position B where the line a = cr, 
crosses the line T = J~r. 

Thus, we have studied the stability of the low- 
temperature phase of a Josephson junction array 
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temperature may depend on the distribution func- 
tion of disorder [11]. Unfortunately, insofar neither 
real nor computer experiments were accurate 
enough to check the existence of such a property. 
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Fig. 1. In the limit of zero fugacity the ordered phase is stable 
below the line ABCD. The renormalization effects shift the 
curved part of the phase transition line to the lower temper- 
atures. 

with positional disorder with respect to spontan- 
eous creation of vortices and unbinding of vortex 
pairs. Our main conclusion is that in the situation 
when the system can be described in terms of 
a Coulomb gas with random potential the reen- 
trant transition to the disordered phase cannot 
take place since the correctly calculated average of 
the correction to vortex-vortex interaction always 
decreases with the decrease in temperature and 
therefore cannot become more importnat. This 
conclusion is in agreement with the results of ex- 
periments on Josephson junction arrays [7] and of 
numerical simulations [7-9]. The validity of the 
additional suggestion that at low temperatures the 
critical value of disorder does not change with 
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