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Stability analysis of a two-dimensional uniaxial vortex glass
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The simplest model of a vortex glass is considered which is applicable for the description of a two-
dimensional uniaxial vortex crystal formed by the fluxon lines in a large area Josephson junction with inho-
mogeneous width. The analysis is performed in replica representation in terms of a free-energy functional
which depends on the renormalized correlation function. The properties of different solutions of the Dyson
equation are considered, the main attention being devoted to investigating the stability of these solutions. In
particular the solution with the one-step replica symmetry breaking which corresponds to the absolute maxi-
mum of free energy is shown to be always stafviéen it exists at aJl The unimportance of higher-order
corrections for the form of the asymptotic behavior of the correlation function in the phase with the one-step
replica symmetry breaking is also demonstrated.

I. INTRODUCTION Here and further on an overbar designates the average over

The discovery of the hiafi-. superconconducting materi- disorder, whereas the average over thermal fluctuations will
y 9l Sup 9 be denoted by the angular brackets.

als have essentially increased the possibilities for the experi- The model(1) takes into account only the uniaxial dis-
mental observations of various phenomena related with thSIacements of the vortices. Whddi=2 it can be used to

ﬁ]rese?ﬁr;a\inof v((:)rr(talgesals dszge;fn?r?ﬁ:%g?rlfg {gttt'ﬁg r;cilit;e describe a vortex crystal formed by the fluxon lines in a large
9. p 9 p and so o area Josephson junction to which the magnetic field is ap-
development of theoretical Investigation of these phenomenslied in parallel to the junction plane, the random potential
and the appearance of many new idélms a recent review leeing related with the inhomogenities in the width of the
see Ref. 1 In particular a suggestion has been made that g‘wnction. The cas® =3 corresponds to the description of a

low temperatures a phase should exist in which the motion vortex crystal in a superconductor with well developed lay-
the vortices is quenched by disorder and therefore the linear Y b b Y

resistance is abseh® The properties of this phagcluding ered structure in situation when the magnetic field is parallel

the multitude of metastable states separated by the diverginto the layers. The uniaxial modél) can be generalized to

barrierg are expected to be more or less analogous to tho n%orporate the multicomponent displacemntut the

sg ' . . :
) . s : roperties associated with the glassy behavior can be ex-
of W|dely_d_|scussed infinite-range spin-glass motielad pected to be present already in the simplest uniaxial case.
therefore it is usually called a vortex glass.

) . In the general situation the most important drawback of
It has been suggestetthat the simplest model which . : . :
. the model(1) is that it does not take into account the possi-
allows one to analyze the large scale properties of a vorte

crystal (or charge-density wayanteracting with a random B?Iity of_formatio_n qf dislocations. But in the case of a two-
potential can be described by the Hamiltonian @mensmngl umgmal vortex crystal formed by the flyxon
lines the dislocations would correspond to the end points of

] these lines and therefore cannot exist. In the present article

— D 2 ; we concentrate exclusively on the two-dimensional uniaxial
H= f ar 2 (VW™ Va(rcosu(r) +Vo(nysinu(r) | case for which the descripzon of flux lattice pinning with the
(1) help of Hamiltonian(1) is rather accurate.

) ] Another possible application of the two-dimensional ver-
where the variablei represents the smoothly varying com- sion of model(1) is the description of crystal growth in pres-
ponent of the displacement. _ ence of quenched disord&But probably the most important

The first term in Eq(1) describes the elastic energy of a reason for the investigation of this model is that it is one of
vortex crystal which is chosen in_ the simplest possible formthe few low-dimensional systems which presumably demon-
whgreas the gecond _term describes the most _relevant CONtErate the glassy properties but allow for application of dif-
bution to the interaction of a vortex crystal with a randomferent kinds of analytical treatment which take into account

potential®® The distribution of a random potential has to be the fluctuations.
invariant with respect to arbitrary shift af, therefore the In terms on a unit vector
distribution of the functionsV,(r) and V,(r) can depend
only onV(r) +V3(r). The simplest choice is to consider the d=(coau,sinu), 3)
Gaussian distribution with local correlations the parameters
of which are defined by the Hamiltonian(1) reduces to the form
Vi(n=0;  Vi(nV,(r')=2Ys;s(r—r’) (i,j:1,2).(2) H=f dPr %(Vd)2+v(r)d(r) : €Y
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corresponding to theXY model with random field Refs. 9-11 and in the SCHA of Refs. 6 and 7 simply the
V=(V;,V,). However since we assume the variableo be  different solutions of this complex equation are considered
continuous and uniquely defined the mod&) should be Wwhich can coexist at the same temperature. And although
identified with the random fielX'Y model in which the cre- one of these solutions is known more accurately than the
ation of vortices is prohibited. In terms of a vortex crystal theohhef this does not prove that the second one does not exist at

vortices of theXY model correspond to dislocations. all. ) ) )
The first wave of interest to the two-dimensional version 10 choose which of the two solutions really describes the

of model (1) has developed precisely in the context of theProperties of the system additional arguments may be
random-field< Y model®~4 After Houghtonet al® had dem- needed, the simplest of which may be related with the sta-

onstrated that the anharmonic terms in EQ.are irrelevant b|||t.y of these solultlons. The solution which correctly de-.
: scribes the properties of the system cannot be unstable with
at high temperatures, but become relevant at low temperq-

. o P+ Yespect to small variatiorfs.
tures, the more systematic renormalization-group description Giamarchi and Le Dous<ahave shown that in the frame-
of the phase transition has been developed by Cardy a

rWork of SCHA the replica-symmetric solution is unstable
O . .
Ostlund® and Goldschmidt and HoughtdhThe difference 514 therefore the choice between the two solutions should be

between the two phases manifests itself in thenade in favor of the replica symmetry breaking solution. But

asymptotic behavior of the correlation function since the form of the replica-symmetric solution is known
much more accurately that the simplest possible form sug-
C(R)=([u(r+R)—u(r)]?), (5) gested by SCHA, it is certainly important to check if this

solution remains unstable when the renormalization effects

which in the high-temperature phase diverges logarithmi&'e taken into account. We discuss this problem in Sec. IV
cally (like in the absence of disordewhereas in the low- after rederiving in Sec. Il the renormalization-group equa-
temperature phase the renormalization-group equations préons in the fofrmh wh|crt}|_3|mpllf|bei-s their application in the
dict thatC(R) has to diverge as the square of logarithfa.  'nvestigation of the stability problem. . .

The predictions of the renormalization-group approach In Sec. IV we consider the two sources for the instability

. . . f the replicon modeéonly one of which can be discussed in
developed in the frameworl_< of replica representation turne erms of SCHA and show that although each of them in the
out to be in agreement with the results of the real-spac

S s Gbsence of the renormalization corrections leads to the insta-
renormagjgatlon p_rocedure sug_gested by_ V!Ilam andbiIity of the replica-symmetric solution, the inclusion of the
Fef”aﬁd and with _the dynam|<{:fbrenormallzat|on-group renormalization effects removes the instability. In the situa-
analysis of Goldschmidt and Schatlb. tion when both sources of the instability are present simulta-

Recently it has been shown with the help of self- ;
; : > . neously(as they always are in the real sysjeonr approach
consistent harmonic approximatigeCHA) that in the low- allows only to conclude that the replica-symmetric solution

temp%rgtéjrehphase E)hlet r'epllc?t skymmeitry breaktlr.lg tﬁaﬂas to remain stable at least in some finite interval of tem-
occur.”” such a possibility 1S ”_0%_55‘1 en nto account in eperatures below the transition temperature.
renormalization-group calculations™ since they explicitly The stability of the other solution, which is the solution

assume the situation to be replica-symmetric. SCHA predicts ; ; A :
; . . th the one-step replica symmetry breaking, is investigated
that the asymptotic behavior of the correlation functigh =, Sec. VC wheFr)e V\F/)e findythe inteyrval of thge possible gizes

should be logarithmic also in the low-temperature phase, thg; 1 p1ock in which this solution is stable. The extremal

;)nly dlffb:renc; W'thdthe h|gr;-'tura]mpercl';\ture_g]ha_sef;gg_gh|n th%oint corresponding to the absolute maximum of free energy
emperature cependence ot thé prelogarithmic factorne always belongs to this interval. Thus, at least in some part of
analogous behavior of the static correlation function in thephase diagram both coexisting solutions of the Dyson equa-

Iow-tfertnp?rgture .phasel 5@ a:]soh pred|ctted tl::y t;]he q Selffion are stable so the choice between them can rely only on
consistent dynamic analystswhich In contrast to e ay= - yhe comparison of their free energies.

namic renormalization grodh'® allows (and requirek for The results presented in Sec. (devoted to the replica

fche possibility of the fluctuation-dissipation theorem break'symmetry breaking solutiorinclude also the more detailed
Ng. . ._description of the phase diagram predicted by SCHA which
fScr)] far theredlls no c%mplete agrr]eemen(tj.or) the mfear;]'nghows that the phase-transition line is split by a singular
of the contradiction between the predictions of t epoint into two segments with different critical behavior. And

renormalization-group analysis and SCHA. The tendency eX.'sac v D we demonstrate that the higher-order corrections

ists to assuné*®that since the renormalization scheme is 346 not change the form of the asymptotic behavior of the
much more systematic approach than the variational proces, o |ation function corresponding to the solution with the

dure incorporated in SCHA, the former should be more__ - : ; : ;
trusted than the latter. one-step replica symmetry breaking with respect to what is

In the present work we suggeéBec. I) that both ap- predicted by SCHA. Section VI is devoted to a short discus-

; sion of the results.
proaches can be understood in the framework of the same

general scheme which consists in considering a free-energy || FREE ENERGY AS A FUNCTIONAL OF THE

as a functional of the renormalized correlation funcﬁ%ﬁq RENORMALIZED CORRELATION FUNCTION

This correlation function has to satisfy a Dyson equation

which can be obtained by a variation of a free energy func- The replica approa¢h®is based on a simple identity:
tional and contains the infinite sequence of diagrams. The 1

discrepancy between the predictions of different approaches InZ=lim=(Z"—1), (6)
appears because in the renormalization-group calculations of n—ol
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which allows one to calculate the average over disorder ofs the free energy corresponding to the harmonic part of the
the free energy of the system by calculating the average dflamiltonian(8), can be used as a formal definition of a free

the partition function ofi replicas of the same systefat the
end of calculationn should be set equal to zgrd-or the

energy as a functional of the bare correlation function
ng(q) and fugacityY. Instead of introducing diagrammati-

model (1) the result of such averaging can be rewritten as aal notation it will be more convenient in the following to

partition function corresponding to the Hamiltonian:

f d?R

where the replica indicea andb run from 1 ton. In the
second sum the constant term correspondingtob has
been for simplicity omitted. We assume that the factdr is/
included into the definition of the original Hamiltonida),
s0J=1/T and Yo 1/T2,

Hamiltonian(7) can be rewritten in a more general form
as

%E (Vu®)2-Y>, cogud—ud)|, (7
a a#b

1( d%q B
H= Ef (2_77)2;) [Go H(@)1%Pud(q)uP(—q)

—Yf dzRES exp[i; saua(R)}, (8)

where
[GoH(@)]1P=Go X (@) 6% Gol(@)=Ig%  (9)

and the set oh-dimensional vectors consists ofn(n—1)
vectors:

1 for a=a,
si={ —1 for a=p, (10
0 for a# a,B,

which can be numbered by two indicea and g
(1< a,B=n) not equal to each other.

Expansion of the partition function corresponding to the

Hamiltonian(8) in powers of the anharmonic term allows to
get rid of the continuous variablag'(R) (by performing a
Gaussian integratigrand to rewrite it as a partition function
of a Coulomb gas:

1
HCG:E% ;) FGP(R—R)S+N In(1/Y)  (11)

formed by the vector charges.'® HereN is the total num-
ber of charges in a given configuration.
On the other hand the analogous expanginrpowers of

the fugacityY) of the free energy produces a series with the

same structure as has been constructed by Atrat. for the
free energy of the one-component sine-Gordon métiehis
expansion

F{Go(),Y}= p§=:O Ep{éo(Q) Y Ep{éo(Q) Yo YP,
(12

in which the zeroth-order term

~ . 1( d%q -
FO{GO(q)}zszIn detG, *(q) (13

work directly with explicit expressions for the low-order
terms in different expansions.

It is not hard to notice that since the first term in E8).is
harmonic the renormalized correlation function of the repli-
cated system

G(q)=(u¥(q)u°(—q))

can be found by calculating a variation of the free energy
with respect to the inverse of the bare correlation function:

(14)

SF

ab — 2
=TS G, @

(15
The form of Eq.(15) implies that in terms of the thermody-
namics[ G, *(q)12° and G3°(q) are conjugate to each other
and therefore with the help of the Legendre transformation

the free energy can be expressed as a functional of
Gab(Q):lg

F=Fo{Go(a),G(a)} + Find G(q), Y};

Fin= 2, FolG(a). Y} ForY? (16)

In terms of the diagrammatic expansion the Legendre trans-
formation of Ref. 19 reduces to the exclusion of the diagrams
which can be decomposed into two parts by breaking two
lines, whereas the form of the zeroth-order term is changed
into

1( d’q .
FOIEJ W(In delG’l(q)

—SP[GHa) Gy H@IG(D)). (17)

Only the zeroth-order term in expansitt6) depends on the
bare correlation functiorGSb(q), whereas all the higher-
order terms, starting from

1
Fi=-Y> ex;{—i
S1

s3G2P(R=0)s?

a,b

1
=-YD exp — —.%’11) (18)
Sl 2
and
Y2 1 1
=——> jdzR ex;{——ff -2 )
2 o 2 2 11 2 22
- 1 - 2
X| exp(— 1) = 5% -1 (19

depend only on the renormalized correlation function
G2P(q), or to put it more precisely on the expressions of the
form
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. amab b which can be obtained by the variation of E@.6) with
Zij :Z’) SSGP(Ri—Ry)sy, (20 respect toG2"(q), the self-energy pai2*{G(q)} being re-
' lated to a variation oF:
which were introduced in Eq$18) and (19) to make them
more compact. R SE.
In terms of the Coulomb gas E(R0) describes the inter- 323b(G(q))= 8172Wb'L; (23
action energy of two vector charggsands;, whereas the ()

energyE, of a single charge is given by the free energy defined by E(L6) coincides with the free

1 1 energy defined by the original functionél2).!® In the gen-
Eg====> sf‘Gab(R=0)sF. (21)  eral case Eq22) can have different solutions corresponding

2 225 to different values of free energy. That means that the sum-
Since we keep explicitly the summation owerin different mation of some sequence of divgrgent diagrams in the func-
expressions it is always possible to identify these expressiorfonal (12) cannot be performed in the unique way and the
with a particular combination of charges to which they cor-result can d_epend on the regularization. In that case the use
respond. For example EL8) describes the contribution to of the functional depending on the renormalized correlation
the free energy from the unbound charges whereas ). function simplifies the consideration removing some un-
includes both the contribution from the bound pairs ofPhysical divergencies right from the beginning. _
charges and from the interactions between the unbound FOr the case of the Hamiltonie®8) thf first two terms in
charges. the expansion for the self-energy pai®(q) have the form

The main property of the functiondll6) is that at its

stationary points, that is wheG2°(q) satisfies the Dyson ab, o 2 OF1 ab 1
equation 21(q)=8n 5G30(q) —Yg S;S1exp — 5n (24

[G™H@)]™*=[Gy (@)1 +32{G(u)}, (22 and

oF, 1 1
ESDZSWZW ZYZS;SZ j dszeX% - Ef‘;/ll_ 5%22)

1
X { s2sP| exp(— £ — 5% 2 —1|+sshcog qR)[exp( — £10) — 1] | - (25)

—_———

Since G?® entersF,, only through the combinations of the two-dimensional sine-Gordon modéRecently it has been
form (20) and all the vectors obey the relatiort ,s?=0, the  applied by Mezard and Parfsito the problem of fluctuating
expression for the self-energy p&fP(q) always satisfies manifold in random media.
the relation Substitution of Eq(28) into Eq. (27) shows that the ex-
pression for the variational free energy coincides with the
aby o\ abs o\ sum of the two lowest-order terms in the expandib6):
2 3*(q)=2 3*(q)=0, (26)

Fyar=Fo+F1, 29
which holds also in any particular order in fugacity. VAR O @9

In Refs. 6 and 7 the same problem has been approacheghd therefore the application of this particular form of the

by calculating a variational free energy variational approaciito the system which allows to express
_ its free energy as a functional of the renormalized correlation
Fvar=Frrt(H-Hrr)1r, (27) function) should be considered not as an uncontrollable ap-
corresponding to the Hamiltoniaf?) with the help of the Proximation based on unjustified assumptions but rather as
harmonic trial Hamiltonian: the first step of a more general and systematic treatment. The

importance of this step is related to the fact that the self-

1( d?q consistent equation
HTRZEJ (27)2;) [G™H@)]* uX(q)u(—q). (28)

| , [GH@]**=[GoH@]**+2{G(a)} (30
In Eq. (27) F1g stands for the free energy for the trial Hamil-
tonian(28) and( . . . )1 for the thermodynamic average cal- obtained by the variation of the expressi@9) for the free
culated with the help oH 1. Both terms can be calculated energy[which obviously is just a simplest possible trunca-
exactly. Such an approach, which is also known as the selfion of the general Dyson equatid@2)] can have not only
consistent harmonic approximatig®CHA), has proved to replica-symmetric but also replica symmetry breaking
give a correct qualitative description of both phases of thesolutions®’
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We discuss the properties of the replica symmetry breakin the limit of infinite system size is equal to zero. The first
ing solutions of Eq.(30) in Sec. V after investigating the nonvanishing contribution ter(q) appears in the second-
stability of the replica-symmetric solution. But it has beenorder in fugacity:
necessary to explain the meaning of SCHA before that, since
so far the stability problem has been discussed only in the

—v?2 2 _
framework of this particular approximatidn. TAD=Y f d°R(2=2 cogR)W(R), (38)

where W(R) =exd —E,(R)] is the statistical weight which
can be associated with the neutral pair of charges whose total

lll. THE REPLICA-SYMMETRIC SOLUTION energyE,(R) is given by the same expression

According to Eq.(26) when the symmetry with respect to

a permutation of replicaéhe replica symmetpyis not bro- Ep(R)=2[Go(0)—Gy(R)] (39)
ken the only possible form of the self-energy matrix is as the correlation functiof(R) of the pure system.
ab ) = ab For R>a (wherea is the cutoff length defined by the
28(g)=(né *-1)o(q). (3D form of the cutoff in momentum spack,(R) behaves loga-
For such a form o£2°(q) the inversion of Eq(22) in the rithmically
limit of n—0 gives ] 1
G*(q)=Go(Q)8 **+Go(q)o(q). (32) Ep(R)~4K In = K= —5=T, (40)

Since the sum of the componergs of any vector charge and therefordV(R) is characterized by an algebraic behav-
s is equal to zero, the second term in the right-hand sidéor:

(rh9 of Eq. (32) drops out from any expression of the form

(20), which therefore is reduced to W(R)

= (4

Zii=(55)Go(Ri—R;j). (33 _ ,
_ _ For example, if a sharp cutoff &tj| =g, is assumed and
The form of Eq.(33) shows that the interaction of vector q. are related as
charges in the replica-symmetric case always remains un-"

renormalized. The origin of this property can be traced back ag.=2e Ye~1.123, (42)
to the statistical invariance of the initial problem with respect ) ,
to the arbitrary uniform translation in. wherey, is the Euler's constant.

As a consequence(q) drops out from all the terms of The on_ly 'Ferms Wh_|ch survive in the— O limit and give
the expansion for the free energyith the exception of the @ nonvanishing contribution to(q) correspond to the neu-
zeroth-order terinand from the rhs of the Dyson equation tral pairs of chargess(+s,=0). This is also true in all the
(22), which in the replica-symmetric case can be reduced tdligher orders: wheiGo(R=0) is divergent only the terms

the scalar form corresponding to the neutral combinations of charges are fi-
nite.
of; For smallq the expressiori38) can be approximated as
o(q)= 8 s, (34 i he expressionss PP
° o2(a)~Be?, (43
where
where
fine= i ! F 35
int= 1M o Fint @9 B=mY? f dR RW(R). (44)

is a disorder-induced contribution to the free energy per repcomparison with Eq(41) shows that the integral in E¢44)
lica. Therefore the problem of solving the Dyson equation injs convergent only foK >1. ForK<1 this integral diverges
the replica-symmetric case does not exist—in that case thignd therefore the approximatiga3) is no longer valid. Ac-

equation is reduced to the explicit expression for the selft,ally for <K <1 the straightforward calculation of the in-
energy function. But since this expression contains an infitegral in Eq.(38) gives

nite number of terms there remains a problem of the summa-
tion of all the essential contributions to it. o,(q)~ g2 (45)

In the replica-symmetric case the expression for the en- . , . .
ergy of a single vector charge but since the same divergence appears also in the higher

orders of the expansion, this answer has to be corrected.

d?q Let us call the pair of chargess ands, the total charge of
E0=G0(R:0)ZJW60(Q). (360)  which s=s;+5 belongs to the original set of elementary

chargedq10), the reducible pair. Since for the distances much
is logarithmically divergent and therefore the first-order con-larger thanR;—R, the reducible pair is indistinguishable
tribution to the replica-symmetric self-energy function from the single chargs, it is possible to take into account
the important sequence of higher-order diagrams by intro-
o1(q)=2Yexd —Eg] (37 ducing the scale dependent fugacityR):
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R It can be seen from E¢49) that the behavior oY (R) for
Y(R)=Y+2m(n— 2)f dRY R )WYAR’). (46 R—_w= depends essentially on whethéris smaller or larger
0 than 1. ForK>1 the renormalized fugacity(R) tends to a
The factor 6—2) in the rhs of Eq(46) stands for the num- finite limit as R goes to infinity. That means that E(?2)
ber of reducible pairs which can imitate given elementarycorresponds to the same asymptotic behavier(@f) as sug-
charges , whereas the weight factoNY4R) appears be- gested by Eq(43) with B given by
cause the energy of the reducible pair of charges differs from

tlhé (%he_rgRyr) of a single charge by the amount equal to B=7rf dR RYZR)W(R). (53
2Ep\j . 0

By differentiating both sides of Eq46) it can be reduced
to the differential equation On the other hand foK<1 the renormalized fugacity

Y(R) tends to zero asafR)%~ 2% which makes the integral

dY(R) in Eq. (53) diverge logarithmically. In the nontruncated ex-

— 2 1/2
drR 4TRY(R)WA(R), (47) pression(52) this divergence is cut off @&&~q~* giving in
] ) the q—0 limit
(where we have put to zerg the solution of which can be
written as (1-K)2 1
B~ In —. (54)
4 aq

R
— -1 -1. — A=1AY V12 =Y
VIR=IY T+ aal(R)ITS - 1(R) deR RIWHRY). For K—1+0 the value of B tends to the finite limit
(48)  YalA.
To avoid confusion maybe it is worthwhile to emphasize
once again that we are using the renormalized but unrescaled
fugacity Y(R), whereas the behavior of the rescalgahd

R a |2k renormalizedl fugacity y(l) is exactly the oppositey(l)
I(R)wf dR’R’(E)
a

For W(R) of the form(41) the functionl (R) can be approxi-
mated as

goes to zero(for |—o) in the high-temperature phase
whereas in the low-temperature phase it has a finite fiftit.

a2 R\ 22K In the disordered systems it is important to distinguish
_lsaolls —1| for K#1 between the full correlation functio(b) which in terms of
=1 & \a 49 the replicated system is given by
a’In(R/a) for K=1. ,
The choice of the lower integration limit in EG49) implies C(R)= f d—qz(z—z cogR) lim FE Gaa(q)}
that the bare value of fugacity can be associated with the (2m) n—olN"a
smallest possible length in the system—the cutoff lerggth (59

The more familiar form of the differential equation de-

scribing the renormalization of the fugacity and its irreducible part

dy Ci(R)=([u(r+R)—u(n]*—(u(r+R)—u(r))?
a=(2—2K)y+2w(n—2)y2 (50)

(2—2 cogR) lim

n—0

1
o G"“«q)}. (56)
a,b

d?q
[wherel=exp{R/a)] can be recovered by introduction of a = f 2m)?
rescaled fugacity:
_ Substitution of Eq.(32) into Eq. (56) shows that in the
y=a?(R/a)?> " 2XY(R), (31 replica-symmetric case the irreducible part of the correlation
but in the following it will more convenient to work with the function remains exactly the same as in the absence of dis-
unrescaled variables since all the expressions which are @rder:
interest to us have a more transparent form in terms of these

2
variables. _( 9a _
If the results of the field-theoretical analysis of Gold- C"(R)_J (277)2(2 2 comR)Go(q)~4K In(R/a)
schmidt and Houghtdh are translated into the language of (57)

the unrescaled variables the main conclusion is that they re- . . .
veal no other divergencies in addition to those which can b hat is unrenormalized. On the other hand, the Iong-d_|st§nce
described by the renormalization of fugacity according to Eq ehavior of the reducible part of the correlation function:
(47). Therefore to take into account all the important higher-
order corrections to any expression it is sufficient to substi-
tute the constant fugacity by the renormalized one. For ex- d2q 1
ample Eq.(38) for the second-order contribution to the self- = f ———(2—2 coglR) lim [—2 Gab(q)}
energy part should be substituted by (2m) n—ol Nazb

C/(R)=(u(r+R)—u(r))?

(58)

a(q)zf d’R(2-2 cogR)Y?(R)W(R). 52 s determined byr(q):
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d? Y
Cr(R)=f—q2(2—2 cogR)G3(a(a), (59 L3*%q,q")=— 52 s7ss%s"
(27) 2%
and therefore is qualitatively different f&¢>1 andK<1. In 1
the high-temperature phas& 1) in which for g—0 the X ex —EEf s°G*(R=0)s'|. (64)
approximation(43) can be used the reducible part of the &
correlation function diverges logarithmically: In the replica-symmetric case E@4) reduces to
B bed 1
C/(R)~4KyIn(R/a);  Ki=7—, (60) Lbe (q,q’)=—§Pab°dal, (65)

whereas in the low-temperature phdes itself diverging  where the matrix
according to Eq(54) and the asymptotic form df, acquires
additional logarithmical factor pabed_ %2 Asbsced (66)
C/(R)~2K2(1-K)An%(R/a). (61) °
is symmetric with respect to all possible permutations of

Note that forK—1 the prefactor in Eq(61) coincides indices, whereas is the first-order contributiof37) to the
with the one which can be deduced from the renormalizatiorself-energy functionr(q).
equations of Goldschmidt and Houghtbmvhich have been The stability of replica-symmetric solution has been con-
derived in @ much more systematic way than presented heigdered by Giamarchi and Le Doussal the framework of
and accurately take into account the explicit form of the cut-SCHA. These authors have noticed that although in two di-
Off, both in the coordinate and in the momentum space. Ofi'}nensionsEo is given by the |Ogarithmica”y divergent ex-
the other hand, the value of the prefactor cited in Refs. 1pression and therefore in the limit of infinite system size
and 26 as being universal is larger by a factor of 4. o, is always equal to zero, the presencergfin Eq. (65) can

In the terms of the vector Coloumb gas the phase transistjll be of importance if some regularization procedure is
tion between the two phases described above is very peculigied. It will be convenient to rederive here the results of Ref.
since in both of them the charges are bound in neutral pairs jn the form which allows for the inclusion of the renormal-
and their interaction is exactly the same. Usually the phasgation effects.
transition in a Coulomb gas can be associated with the dis- Tg check the stability of any solution of the Dyson equa-

sociation of the neutral pairs of charges which leads to fortjon one has to look for the lowest eigenvalue of the equa-
mation of a “plasma” phase in contrast to a “dielectric” tjon:

one in which all the charges are bound in pairs. In the present

model this can happen only if the replica symmetry breaking d’q
is allowed. Agab(q)=f—z > L#e%q,q")g°q’").  (67)
(2m)° ¢4
IV. STABILITY ANALYSIS In SCHA only the two lowest-order contributions to
OF THE REPLICA-SYMMETRIC SOLUTION L3>°%q,q") [given by Eqs.(63) and (65)] should be taken

. . - . into account. The eigenvalues of the matfixdefined by Eqg.
To investigate the stability of any solution of the Dyson (66) are equal to On, 2n, and 2. The last one has degen-

equation(22) one has to consider the second variation of the _ ; ;
free-energy functional16). The result can be again ex- eracyn(n—3)/2 and corresponds to the family of eigenstates

S e which includes all the matrice®2° satisfying the con-
pressed as an expansion in powers of fugacity: .
straints:
9°F

Lab’Cd(q,q’)Ez(Z’ﬂ)4aGab(q)ach(q,) \I,ab:\l,ba; \I,a:bzo; 2 \I,ab:E \I,ab:O.
a b

(68)

These eigenstates are usually referred to as the replicon

modes. In the limit oh— 0 they are the only modes which
(62) can be dangerous for the stability of a replica-symmetric so-

In order to simplify some equations we have included addilution with respect to a replica symmetry breaking.

tioga{lj factor 2(27)* in the definiton of the Hessian  For replicon modes, that is f@?°(q) of the form

Labed(q,q").

Théngr())th-order term in Eq62) is diagonal in momen- 9*°(a)=¥*g(q) (69)
tum:

=p§o La*%q,q");  L3™Y(q,q")<YP.

[where ¥2P satisfies the constraint§8)], the matrix equa-

_ _ tion (67) reduces to a scalar equation which in SCHA has a
L 0= (2m aa=a e @I Nl fion (67) ]
63

— qu/
\&/lvlnereas the first-order term does not depend on momenta at )\g(q)ZA(q)g(q)—alf tEL 9(q’), (70)
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where o1(q)=2Y(q)exd —Go(R=0)]. (79

A()=Gy%(q) (71  Interms of the Coulomb gas representation such substitution
) . ) . corresponds to a consistent addition to the contribution of a
gives the spectrum of the replicon modes in absence of dissngle charge contributions of the multicharge configurations
order (0,=0). which with the increase of scale become equivalent to a
The lowest eigenvalue of E470) Ao should correspond  gjngie charge. It seems reasonable to assume that the func-
to the real and rotationally symmetric eigenfunctiofn(d)  ijon Y(q) should be given by the expression f¥(R) in

for which which the ratio of current and cutoff scalBga is substituted

d%q by the inverted ratio of current and cutoff momenta:
f (27)290(009&0- (72 q
. ) Y(@)=Y|R=a—|. (80)
In that case the eigenfunctiay,(q) can be excluded from q

Eq. (70) which can be rewritten as o ) )
Substitution of Eq(79) [with Y(q) defined by Eqs(48),

d’q o1 (49) and(80)] into the expression in the lhs of inequali4)
22 “ngt AQ) 1 (73 leads to an important change in the behaviorker 1 giving

and therefore.y can be negative only if the inequality . d’q o4(q) 1
lim 5 = 5t, (81

2q o am—0) (2mM7 AlQ)  (age)
1
(27)? A(q)>1 7 \where

is correct. t=4K(1-K)=<1. (82)

Since the expression in the Ihs of inequalid) is a

product of an infinitely small factas; and a divergent factor Comparison with criterig74) shows that the inclusion of the
renormalization effects removes the instability of the replica-

d’q 1 symmetric state in the low-temperature phase. But this does
= f (ZT)Z FQ) (79 not close the stability problem since it is necessary to con-
sider another source for the instability which is maybe even
some regularization procedure has to be used to calculate fhore evident than the one discussed above, since it can be
Giamarchi and Le Doussalhave done it by adding to noticed even without any regularization. It can be associated
G, *(g) a small massu which in the end of calculation with the neutral charge pairs which are always present in the
should be put down to zero. The other possible approackystem, that is one has to consider the second-order contri-
consists of restricting the integration in E¢36) and(75) by  bution to the Hessia62) which remains finite even in the
the same constrain,,<|q|<q. with subsequent consider- limit of infinite system size.

ation of the limitg,,— 0. With such a form of a regulariza- In the replica-symmetric case this contributithe gen-
tion eral form of which can be found by taking the second varia-
» tion of Eq.(19)] acquires a form
o1=2Y(qm/qe) ™", (76)
1
whereas L3%%a.q") = = 5 P**45(q.q"), (83
1 L . .
D= “2_q-2) (77) which is characterized by the same dependence on replica
J (An"~ G indices as the first-order contributid®5), whereas its de-
and therefore pendence on momenta is contained in the factor
» for K<1, Iz(q,q’)zYZJ d2R(2—2 cogR)(2—2 cogR")W(R),
lim [ Y, for k=1 849
1(Am)D (A= 5707 for K=1, (79
Om—0 ¢ which can be also expressed in terms of the second-order

0 for K>1. contributiono,(q) to the self-energy function

Comparison with Eq(74) allows then to conclude that for "N "n_ "_ .

K <1 the lowest eigenvalue of E(70) is negative and there- '2(0.07) = 202(Q)+ 202(q) ~ (A + ")~ 02(d 4 Zg5)

fore the replica-symmetric solution is unstable. ) bed o )
When deriving Eq(73), which allows us to determine if Since the dependence bf”“(q,q") on replica indices is

the lowest eigenvalue of E¢67) is negative or not, only the given by the same matriR as in the case ot$”°%(q,q’),

first two terms of the expansiof62) for the Hessian were the eigenvalue equation for the replicon modes with the help

taken into account. An important sequence of higher-ordeof the same substituiof69) can be reduced to a scalar form:

corrections can be included into consideration if in E¥)

the bare value of fugacity is substituted by a scale-dependent

q e
fugacity Y(q): hg(q)=A(q)g(q)—fWIz(q,q )g(q’).  (86)
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According to Eq.(52) in the high-temperature phase the wave function with large enough localization radius. For ex-

behavior ofo,(q) at smallq is given by

o2(q)~Bg*~AQ’, (87)

where
4K—-2 for 1<K<3/2,
|4 for 3/2<K.

Substitution of Eq.(87) into Eq. (85 shows that only the
second term from EQ.(87) makes a contribution to

I,(q,9") whereas the contribution from the first term com-

ample the substitution of the Gaussian wave function

R2
- ?)
(in which the prefactor is specially chosen to makesqual

to one into Egs. (90) and (91) for K>1/2 gives, respec-
tively,

1
g(R)= ﬁex (99

pletely drops out. The simple power counting allows one

then to conclude that in this case the zeroth-order t@tih
dominates over the second-order tei8h) (at least for small
enough disordgr At K=1 the exponentr becomes equal to

2 and approximation87) ceases to be valid making the

power counting arguments insufficient. Rd 1 a different
approach should be used.

If g(q) is the solution of Eq(86) the corresponding ei-
genvalue\ is given by the functional

1
CD{Q}:m(lo_lz)a (88)

where

In=(g| >‘fﬁ (ng(— )=fd2R| (R)I?
(89
is the normalization integral, whereas

|oE<9|To|9>=sz d’R(V?g)? (90

and

|25—<g|f2|g>=f d’R w(R)[g(0)—g(R)]* (9D)

can be interpreted as the matrix elements of the zeroth- and

JZ
lo=27 (96)
and
a 4K
I,=4C(K)Y? - (97
where
C(K)=(1-2%2"2"TI(1-2K). (99
For K—1 the factorC(K) has a finite limit:
lim C(K)=1n2~0.693, (99

K—1

whereas forK—1/2 the factorC(K) diverges. Equations
(96) and(97) can be expected to be valid only fiora when
the details of the form of the cutoff are unimportant.

Comparison of Eq.(96) with Eq. (97) shows that for
K>1 (andr>a) |, can be larger thaih, only if Y is large
enough. In contrast to that fa€¢<<1 for arbitrarily smallY
one can make&b=I,—1, negative by chosing a sufficiently
large localization radius. The optimal value of localization
radiusr o for which the minimum ofP(r) is achieved can be
found by differentiating ®(r) with respect tor. For
K—1-0 and not too larger this optimal radius diverges
according to

(100

second-order contributions to Hessian. To simplify the dis-
cussion of the renormalization effects we have introduced imnd therefore foK =1 the stability of the replica-symmetric

Eq. (91) the notation

w(R)=4Y2W(R). (92

The lowest eigenvalue of E486) \, corresponds to the
eigenfunctiongy(q) [or go(R)] which gives the absolute
minimum of ®{g}. Since both expressiort80) and(91) are
rotationally symmetricgy(R) also has to be rotationally
symmetric:

90(R)=0go(R). (93

Substitution into Eq.(88) of any other functiong(R) can
lead only to the increase df{g}:
Ao<P{g(R)}. (94)

It is possible to show that fd <1 the second-order con-

tribution to Hessian makes the replica-symmetric solution

unstable by substituting into Eq$88)—(91) the arbitrary

solution has to be determined by its large scale behavior.

But once again the conclusion about the instability of the
replica-symmetric solution foK<<1 holds true only if the
renormalization effects are not taken into account. In the
framework of a more general consideration it is possible to
add to the contribution to the Hessian from the neutral pairs
of chargeqg Eq. (83)], the contributions from the multicharge
configurations which on large scales behave themselves in
the same way as neutral pairs by substituting in @) the
bare fugacity by the scale dependent one. This changes the
large scale behavior of the factes(R) into the form

(1—K)2 1
wR=|——

RA (10D

which in terms of the original problem corresponds to

1-K

Ker=1, Yer=5_2- (102
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Equations(102) show that the renormalization effects shift Comparison of Eqs(107) and (108 with Eq. (104 shows
the problem from the region of evident instability into the that the ratio ofl, and the first term in Eq(104) is never

marginal situatiork .= 1.

larger than one:

The direct substitution of the parameters given by Eq.

(102 into Eq. (97) gives

l, 2 , In2

which unfortunately does not provide any further insight

since a different form of a trial wave functiog(R) may
produce a larger ratio df; /I .

But still it turns out possible to prove that the sum of the
operatord ; and —I2R is positively defined. By adding a su-

2
—~<t?<1,

(109
lo1

and therefore the operattxf—lge is positively defined.

Thus we have shown that the inclusion of the renormal-
ization corrections makes the second-order contribution to
the Hessian not dangero(sarlier we have proved the same
for the first-order contribution But to consider both mecha-
nisms simultaneously is a more difficult problem. Nonethe-
less the more attentive interpretation of the results obtained

perscriptR we designate that the renormalization effects argp, this section allows us to conclude that we have proved that

assumed to be taken into account, that is the kemt&) in

both (@q) ~2tl,—I§ andt?,— 1§ are non-negative operators

the definition(91) of the operatoll, is chosen in the form  gnd therefore for

(101). We are sticking to the asymptotic form wi{R) since

our previous estimate has shown that in the marginal case

Kef=1 the localization radiug has to be infinite. Such
analysis becomes even more reliable when the bare value of

Y is smaller tharY .. In that case according to Eq48) and

+12<1 (110

(aqge)?
R_{R

the operatorTO— is positively defined. Even if our

(49) the rhs of Eq(101) gives an upper bound for its Ihs and cajculation has not been accurate enough to extract the cor-

therefore the application of the asymptotic for(d01)
can only decrease the stability.

rect numerical factors in front of andt? in the inequality
(110 (most probably they can also depend on the form of the

Since the eigenfunctiogg(R) which corresponds to the cytoff, it still has to be valid for small enough That means
global minimum of® has to be rotationally symmetric it is that at least in some vicinity of the transition point
sufficient to discuss the form of this functional only for the K _ <K <1 (where 1/2<K_<1) the replica-symmetric solu-

rotationally symmetric functiong(R). In that case Eq(90)
can be rewritten as

2 d2g 2

+R(W) }E|01+|02!

(104

1(dg
dR

= 2 N —_
lg=2mJ fo dR[R
where we have omitted the term

i dg
im-——=
RHOdR

2 2

li d9
im—=
r_dR

2mJ?

since both lim_ o(dg/dR) and limi_,..(dg/dR) have to be
equal to zero otherwise the integral in E404 would be
divergent.

On the other hand, the expressi@®il) for |, after the
substitution of the relation

(0)-g(R) = fRdR'dg(R’) (109
g g - 0 dR/
with the help of inequality
dg(R’) dg(R") [dg(R")]* [dg(R")]?
dR dR | dR ar | 109

can be shown to satisfy

R [dg(R)]? (=
|2<277f dR ——— de’R'Zw(R’). (107
0 dR R

For w(R) of the form(102)

jwdR’R’z R’ —(1_K>21 108
. w(R")= — | r (108

tion has to remain stable.

Recently the analogous investigation of the stability of a
replica-symmetric solution which takes into account the
renormalization effects has been undertaken forgfh@rob-
lem with random fielc®2":?8

V. THE SOLUTION WITH ONE-STEP REPLICA
SYMMETRY BREAKING

A. General properties

In Refs. 6 and 7 the simplest nontrivial truncati@9) of
the free-energy functionall6) has been considered which
has been introduced as a result of the application of the
variational approach. Remarkably the self-consistent equa-
tion for the correlation function which is obtained by a varia-
tion of Eq. (29 allows for the existence not only of the
replica-symmetric solution but also of the solutions with the
broken replica symmetry.

The renormalization-group approaches developed in Refs.
9-11 give no opportunities to discuss such solutions, since
they explicitly assume that the correlation functitr the
charge interactionremains replica symmetric. It is maybe
worthwhile to emphasize that in the renormalization-group
description the Hamiltonian in the low-temperature phase re-
mains essentially nonharmonic at arbitrarily large sclles
and therefore the problem of finding the correct structure of
the correlation function is in some sense postponed but never
solved.

It has been shown that in the case of the two-dimensional
system with Hamitoniart7) the simplest possible form of a
replica symmetry breaking, namely, the one-step replica
symmetry breaking is realizéd. The case of the one-step
replica symmetry breaking corresponds to such a form of a
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self-energy matrix32°(q) when its nondiagonal elements blocks, whereas the second corresponds to the case when
can acquire only two different valudwhich it will be con-  these indices belong to the same block. According to Eq.
venient to denote as-[o(D(q)+cM(q)] and —o(D(q)} (113 G1(q)<Go(q) and therefore for &em<1,

depending on whether the two indicesandb belong to the

same block of the lengtm or not: Eo=Go(R=0). (119
Sa(q)=[no@(q) +macP(q)]6 2°— oV (q)5 2"’ B. Self-consistent harmonic approximation
-o9(q). (111 In the SCHA only the lowest-order contribution tg, has

The form of the first term in Eq111) follows from Eq.(26). ;[/Sritt)tirga;:n into account which in terms§ andE, can be

Here and further on the indices with the prime denote the

number of the block (£a’,b’<n/m). _ _ _ _
For 32P(q) of the form(111) inversion of Eq.(22) pro- f1=YIm exp(—Eo) + (1-mexp—Ey]. (120

duces the expression which in the limitof-0 reduces to  For f,, of the form (120) Egs.(115 and(116) reduce to

1 ot _
G() = Ga(0) **+ 1Go(0) ~Ga(e)]5 ™ o1 (0)=2Yexp( ~Eo), 12y
+G(q) 0 (q), (112 o’ (q)=2Yexp(—E;) —2Yexp(—Eg). (122
where Since in two dimension&y(R=0) is logarithmically di-

vergent we can conclude that in the framework of SCHA
(113 a(®(q) is always equal to zero, whereas according to Eq.
(122 o)(q) does not depend o Thus instead of consid-

The obvious requirement for the size of the block to be be—ering the free-energy functional which depends on two func-

tween 1 anch in the limit of n—0 is transformedinto tions of q it is sufficient tp consider (tlr)le free enéargy which
depends only on two variablés=mog3;™/J andm:

1
Go (@) +maP(q)”

Gi(g)=

0<m<1, (119
the limit of m—1 corresponding to the disappearance off=Ilim—=[Fyar(A)—Fyar(A=0)]
replica symmetry breaking. n—of
When Eq.(112) is substituted into any expression of the 1 A dg(A')
form (33) the last term(which is independent on replica in- z_(__1>f dA’A’ —+Y(1-m)exd —g(A)]
dices always drops outlike it does the analogous term in m 0 dA

the replica-symmetric caseTherefore the disorder-induced

L ; . 1 A+A K
contribution to free energy per repli¢g, can be considered =" |1- —|A In————+Y(1—-m)| —— (123
as a functional ofGy(q) and G;(g). The matrix equation 8m m Ac Ac+A
(22) can be then decoupled into two scalar equations: In the last line of Eq(123 the function

Sf;
o0(q) = — 872 — (115 d2q 1
G ' =
o(a) g(4) fWJ(q A (124
872 Ofipy

—_ (116) which describes the fluctuations’ width for the given value of
1-m 8G4(q)’ the gapA, is assumed to be of the form corresponding to the
sharp cutoff ajq|=q.:

o M(q)=-

the first of which has the same form as HG4) for the
replica-symmetric solution. Sincé,; does not depend on

o©(g) we actually have to solve not the system of two g(A)=K |nAc+A; K:i, (125
equations but a single Eq116) whereaso(®(q) can be A 4w
E(ilirsl)d by substituting the solution of Eq116) into Eq. WhereAc=q§.

- : : Variation of the free energyl23 with respect toA re-
Substitution of Eq(112) into Eqg. (21) shows that in the S
case of the one-step replica symmetry breaking the energy (erc_)duces Eq(122) which in terms ofA and A¢ can be re-
a single charge can acquire two different values written as

2Y K

1 A A
Eo=G1(R=0)+ —[Go(R=0)~G4(R=0)], (117) m-J

A+ A

(126)

If one looks for the maximum of the free-energy functional
(118 ) : . L

(as one is supposed to do in the replica represenjaitios
the first of which corresponds to the case when both indicerecessary also to take the variation of the free energy with
a and B labeling the vector charge belong to different respect tan, which gives

El:Gl(R:O),
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A K

8mrm? In A.

A
A +A

Ac+A

(127

Thus we have obtained for two variablasandm a sys-

tem of two equations from which they can be found. One can

easily exclude from this system the varialpfeobtaining a
single equation:
) K

Az—llA
A—c—‘yn-i-—

Ac

(128

A +A

S. E. KORSHUNOV

53

which the replica-symmetric solution &=1 becomedin

the framework of SCHA unstable[Eq. (78)]. However it
cannot be excluded that the change in the transition type with
the increase of disorder can be an artefact of SCHA.
Substitution of Eq(112) into Eqg. (56) shows that for the
solution with the one-step replica symmetry breaking the ir-
reducible part of the correlation function also remains un-
renormalized like in the replica-symmetric ca@his is a
general property not related to SCHAON the other hand,
according to Eq(58) the reducible part becomes nonzero
already in the lowest-order approximation as soons&3

the properties of the solutions of which depend on the value<(q) is finite. In SCHAG%)(q) is always equal to zero and

of parameter

Y

ForJoxT~ ! andY« T2 the parametey does not depend on

temperature and therefore can be used to characterize the

disorder strength.

For y<1 the only solution of Eq(128 for K=1 is
A=0 but forK <1 the other solution also exi§tswhich for
K—1-0 is given by

A=Ayt (130

that is with increase in temperature the value of the §ap

disappears in a continuous way, the singularity in the free

energy being weaker than algebréiinfinite order” phase
transition). For y<1 Eq. (130 is applicable not only for
1-K<1 but in the whole interval &K<1.

For y>1 the value of the gapA decreases with the in-
crease in temperature not so rapidly andkat1 remains
finite and disappeargédiscontinuously only at K.(y)>1.
Since substitution of Eq9126) and (127) into Eq. (123
gives

f_J(1—m)2A

>m , (131

and on the phase-transition line the values of the free ener-

gies of two phasegone with A>0 and another with
A=0) have to coincide, this can happen only wiar 1.
This observation allows us to provide, with the help of Eqs
(126 and (127, a parametrical description of phase-
transition line fory>1:

X
K= |I'](1—+X)’ (132)
X2 14+x x/[In(1+x)]
Yo | x : (133

therefore only the second term from H412 makes a con-
tribution to C,(R):

1-m [ d?q
CiRI= 1" [ 51222 COSRIGola) - Ga()]
<3k
1-m E nﬁ or a<<R<¢,
- - (134
4K Ing for é<R,

where the correlation lengtlf is defined by the relation
A=¢"2, Summation of Eqs(57) and (134 shows that the
full correlation functionC(R) behaves as

4K In(R/a) for a<R<¢,

C(R)~ 4K
4K In(&/a)+ HIn(R/g) for é<R,
(1395

that is, atR of the order of¢ a continuous crossover has to
take place between the two different values of the preloga-
rithmical factor. For the small scales the prelogarithmical
factor should be just the same as in absence of disérder.

Substitution of Eq(127) into Eq. (126) allows us to ob-
tain a relation

K A/A,
m In(1+A/A,)’
which shows that as soon A3A.>0 the ratioK/m is larger

(136

than one(and increases with the increase Mdfthat is with

the decrease of temperatur&éherefore the asymptotic value
of the prelogarithmical factor at the transition line has a
minimum and discontinuous derivatife.

In terms of the Coulomb gas representation the appear-
ance of the gap with the one-step replica symmetry breaking
structure corresponds to debounding of some types of pairs
whereas the pairs of the other types remain bound. On the
total there aren(n—1)/2 types of noncollinear elementary
vector chargegwhich can be numbered by two indices

the value of the gap at the transition being given bylsa<pgB=n). According to the form of Eq.(113 for

A=xA..
The form of Eq.(131) suggests that although fet>1 the

oM)(gq=0)>0 the energyE; of the charges for which both
indices belong to the same block becomes finite whereas the

gap disappears discontinuously the form of the singularity irenergyE, of the charges with the indices from the different
the free energy corresponds to a second-order phase tranblocks remains logarithmically divergent. Simple compari-
tion (the jump in the heat capacjtyThis is rather natural son shows that the parametermives the fraction of the total
since atm=1 one cannot distinguish the phase with the bro-number of the types of charges which remain bound at the
ken replica symmetry from the phase without it and thereforagiven temperature. With a decrease of temperature down to
the transition cannot be of the first order. Note that the posiK =0 this fraction goes to zero. Such interpretatiomofs

tion of the tricritical point (y=1) coincides with the point at completely compatible with the requireme(itl4).
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C. Stability analysis Comparison with Eq(77) shows then that the lowest eigen-
To show that the solution with the replica symmetry bro-Value among the eigenstates belonging to the class of block

ken by one step can be really discussed as a possible can§ffPliCONs remains non-negative for
date for the description of the properties of the system one _
has to check the stability of this solution. We shall do it in M<K=MmayK), (140
the framework of a more general approach when the size afhereas fom=m,,,,(K) the situation is marginal and the
the blockm is not fixed by the requiremerdif/ sm=0 butis  answer depends on the relation between parameters.
kept as a free parameter. Strictly speaking for ang solu- The other class of eigenfunctions which are potentially
tion of Egs.(115 and(116) defines a solution of the matrix dangerous can be called the in-block replicons since each of
equation(22) and therefore can be discussed in the samghem can be described by the matfs@® the elements of
fashion as the extremal solution. ~ which are nonzero only inside of one mfm diagonal blocks

In the case of the one-step replica symmetry breaking thgf size mxm but satisfy all the constraint8). For this
zeroth-order contribution to the Hessian retains its f(()6|3) fam”y of eigenfunctions the matrix equa“dﬁ?) also re-

[the difference with the replica-symmetric case being thafjyces to a scalar equation which in SCHA has a form
now the form off G 1(q)]3® should correspond t82°(q) of

the form (111)] whereas the first-order contribution can be @ d?q
written as Ag(Q)=A4(9)9(q)— oy fwg(@, (141
ab,cd ’ 1 abcd _(0) 1 abc (1) (0) where
LT (a,q )—_EP 28] _Epl d[o'l —oy'], N ) s A2
(137 (@) =G (@)=I%(q"+A)". (142

Thus we have again obtained the equation with the same
structure as Eq(70) but now there is no need to introduce
any regularization since for the finit® both

where the matri>d51 is defined by the equation

1o,
= "sghsesd (139

bcd
pabed_
1 2 <

K
oV=2Y ) (143

which is of the same form as E66) with the exception that Acta
in Eq. (138 the summation should be restricted only to thoseand

vector charges for which both indicesa and 8 belong to

the same block. We are keeping” in Eq. (137), although D dg 1 1 Ac
according to Eq(119 in infinite two-dimensional systems ) 2m?A(q) 4w A(A+A)
{90, since like in the replica-symmetric case when the

stability is concerned even such vanishing quantities can pre finite._ .
of importance. According to the analysis of Sec. IV the border between

In the case of one-step replica symmetry breaking the twdhe stable and unstable region corresponds to the case when

families of eigenfunctions of the general equati@7) are  the product ofe{") andD is equal to one:

potentially dangerous. For the first of them the dependence

of g®°(q)=¥2°g(q) on replica indices andb is described Ac[ Ac
YA \A+A

by the matrix¥2P=w2""" the elements of which are all
equal to each other inside eachrdinx n/m blocks of size
mXxm but can be different in different blocks, satisfying
nontheless the whole set of constraif8). The eigenstate
belonging to this family can be described as a block replico
since it has the same structure as replicon but is construct
from the uniform blocks instead of separate elements. In par-
ticular, the diagonal blocks can contain only zero elements. )

The matrix equatior{67) for the block replicons reduces Minin( K) <M< M K) (149
to scalar equation which in SCHA differs from E§O) for  and is of the following form:
the replica-symmetric case only by substitution:

(144

K+1
=1. (145

Although this equation does not contamexplicitly it con-
tains A=A (m,K) which should be chosen as a solution of
Eqg. (126) for the given values ofm andK. With the help of
I= .(126), Eq. (145 can be transformed into the equation for
min Which defines the lower border of the stability interval

Ac

0,1:>m20_g-0). mmin:AC+ A(mmin:K) K. (147)

Therefore the same analysis as in Sec. IV can be applied the Comparison of Egs(136), (140), and(147) allows us to
only difference being that the expression &orgiven by Eq.  conclude that the inequality
(76) should be substituted by

mmin(K)<m0(K)<mma>€(K)a (148)
A —[(1-m)/m]K Am 2K/m . .
m20'(10)=2Y mz( ) (_) . (139 where my(K) is the value ofm for whlch the free energy
Ac+A c f(m)=f[A(m,K),m] has a maximum is always correct.
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That means that the replica symmetry breaking solution corean acquire three different values depending on the product

responding to the maximum of the free enefthye extremal  (ss;) (which for the pair with the finite energy can be equal

solution is always stable. to 0, —1 or —2). To simplify the equations in this subsec-
tion we have introduced in Eq149 a notation

D. Unimportance of the higher-order corrections

to the replica symmetry breaking solution G.(R 1 GA(R)—G. (R -
As has been discussed above the difference between the 2(R)= 5[ o(R) = Ga(R)]. (150

replica-symmetric and replica symmetry breaking solutions o
manifests itself in the behavior of the reducible part of the The sum of the contributions from all three types of
correlation function. For the replica symmetry breaking so-Pound pairs of charges can be written in the form

lution it diverges in the same way as the irreducible pidwat

is logarithmically whereas for the replica-symmetric solu-

tion the di\(ergence is fas_teéthe square of Iogarith]m But U<20>(q)zy2f d’R(2—-2 cogiR)exp{—2[G,(0)— G,(R)]

the properties of two solutions have been found with the help

of different approximations. The form of the replica symme- —2G4(0)}[expGy(R) +m—1]%, (151)

try breaking solution has been derived with the help of

SCHA which corresponds to keeping in the Dyson equatiorvhich in the limit ofm— 1 reduces to E(38) of the replica-
only the lowest-order term in the expansion for the self-Symmetric case.

energy matrix32°(q). On the other hand in the case of the ~ The contribution to Eq(149 related toG,(R) is of a
replica-symmetric solution, not only the second-order termminor importance since it remains finite f&—c and the
but also the important sequence of higher-order terms of thi#ogarithmical divergence oE,(R) at large scales is related
expansion are taken into account, all of which are completelgntirely toG,(R):

neglected in SCHA. Thus it is definitely necessary to check

if the slower divergence of the correlation function for the 4
replica symmetry breaking solution is really an intrinsic _ P _
property of this solution and cannot be explained by the in- Ep(R)=2[Go(R=0)~Ca(R)]~

sufficient accuracy of SCHA which neglects exactly those . .

terms in the expar):sion f&2P(q) which e?re responsib)I/e for Comparison W't.h Eq(40) shows tha.lt although the appear-

the faster divergence of the correlation function of replica-f'Jlnce of the replica symmetry breal_«ng gap leads to depound—

symmetric solution ing of some charges the interaction of the charges in the
) remaining bound pairs becomes even stronger. In Sec. IV B

In the replica-symmetric case all the peculiarities in the. i ;
behavior of the correlation function can be related only to thét has been shown that the raidm is always larger than

last term of Eq(32) which does not depend on replica indi- one and therefore the expressi(tb1) for small g can be
ces but is proportional to the self-energy functio(g). An always approximated as
analogous term is present also in Etf12) which defines the
general form 0fG2°(q) for the case of one-step replica sym-
metry breaking, but in SCHA it does not play any role since
the lowest-order contribution tofigiven by Eq.(121)]inthe  whereB is given by a convergent integral like in the high-
thermodynamic limit is always equal to zefbke in the  temperature phase.
replica-symmetric cage Note that as in the replica-symmetric case there is no
The first nonvanishing contribution ©@(°)(q) appears in  feedback in calculation of the replica-symmetric contribution
the second-order iry (also like in the replica-symmetric to the self-energy parto(®)(q). In the limit of n—0
case. Sincea(?)(q) is defined by the relatiofiL15), and the  ¢(°)(q) drops out from any expression for the charge-charge
energy(118) of the free(unbound charges as well as their interaction[of the form(20)] and therefore is not present in
interaction with the other charges depend onlyGytq) [but  the rhs of Eq(151). Thus we have shown that in the case of
not onGy(q) ], only the bound pairs of charges make a finitethe replica symmetry breaking solution the logarithmically
contribution too{)(q). divergent contribution to the correlation function related with
In the replica-symmetric case the total energy of two vecthe presence of bound pairs also exists, but in contrast to the
tor charges is finite only for the neutral pair. When the rep-replica-symmetric solution the prelogarithmical coefficient is
lica symmetry breaking gap appears, that is no longer so. Fafiven by a convergent expression.
the energy of the pair to be finite the charggsand s The model(7) which we consider here has one very im-
have only to belong to the opposite nondiagonal blockgoortant advantage with respect to some other problems with
(ai'=,31', Bi,zaj,)’ that is the pair has to be neutral only Similar Hamiltonian (for example the random manifold
with respect to the index numbering the blocks. The energproblent®) that it can be described in terms of a Coulomb
of such a pair gas. And in a Coulomb gas description any divergence can
be associated only with the form of the interaction between
the charges or some particular complexes of charges. This
allows us to check for the appearance of the new divergen-
Ep(R)=2[G,(0) — G,(R)]+2G;(0)+(s5)G1(R) cies in the higher orders of the expansion simply by checking
(149 if combining some charges together one can construct the

K
HIn(R/a). (152

o V~Bd?, (153
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objects with the lower interaction between them than the Y2K3
interaction between the elementary charges. for- A (155
Quite often this is not possible and that is why in some of

the Coulomb gas problems the exact form of critical behavyyhere in accordance with<1 we have used the relation
ior can be found while keeping only a finite number of terms, Comparison withf;~ Y shows that for such tempera-
in the renormallza_tlon-group equations. This ap_plleg, for ©Xturesf,/f,~K<1 which gives some hope that the higher-
ample, to the ordinaryscalaj Coulomb gas which is iso- ,qer corrections may be even smaller.
morphic to the one-component &ne-Gord_or;mEftmhd also With increase of temperature the higher order corrections
to the variety of the vector Coulomb ga$&s®including the  pecome more important and can lead to the change in the
replica-symmetric Coulomb géswhich describes the prop- magnitude of the gap with respect to the prediction of
erties of the replica-symmetric solution of our problem. gcpya To take this effect into account in a systematic way it
Therefore the results reviewed in Sec. Ill can be expected R necessary to construct some renormalization procedure to
give a quantitatively correct description of the replica- yegcribe the form of replica symmetry breaking solution. Re-
symmetrlc solution of the Dyson equation even in the crltlcalcenﬂy the attempts to describe the replica symmetry break-
region. , , , ing in the model(7) with the help of the renormalization-
_In the case of the replica symmetry breaking solution they oy formalism have been undertaken by Le Doussal and
situation is more complex than in replica-symmetric cas&siamarchi® and by Kierfeld® But in these works a special
since instead of constructing the renormalization procedurgjyation was considered when the replica symmetry break-
simply for the summation of all the essential contributions toing term is artificially added to the Hamiltoniai). Appar-
the expression for the self-energy function it is necessary t%ntly such a consideration does not allow one to make any

solve simultaneously the equation for the replica symmetry.onclusions about the spontaneous replica symmetry break-
breaking contribution to the self-energy part. But still the,q \yhen not the Hamiltonian but the correlation function
application of the Coulomb gas representqtion allows to UNtthe solution of the Dyson equatipioses the replica sym-
derstand that when the second-order contributidB iecon- ey, Therefore the problem of the renormalization-group
vergent then all the higher-order contributions also do nNOyescription of the replica symmetry breaking solution still
contain any divergencieglike in the high-temperature emains to be solved.

phase. The only source for the appearance of divergences is

related to the interaction between the bound charges and the

same interaction appears in all the orders of the expansion in

fugacity (i.e., in the number of the charges involyed VI. DISCUSSION

Thus we have shown that when the second- and higher- |, the present work we have investigated the properties of

order terms are included into the calculation of the reduciblqhe different solutions of the Dyson equation which appears
part of the correlation function for the replica symmetry;, he replica approach to the simplest model of a two-

breaking squti_on it still di.verges.Iogarithmically, that is In §imensional uniaxial vortex glass. In particular we have
the same fashlqn as Fhe irreducible part. Therefore th? fulhown that the solution with the one-step replica symmetry
correlation functior(5) is also characterized by the logarith- ,reaking when it exists is always stable. On the other hand,
mical behavior, but with a larger prefactor than predicted byipe replica-symmetric solution proves to be stable not only in
SCHA (Refs. 6 and ¥ which takes into account only the e high-temperature phase but also in the low-temperature
contribution from the unbound charges. , phase(at least in some finite temperature intejvalhus the
Although the |r_10Iu5|on of higher-order corrections tumedsimplest possibility, when in the low-temperature phése
out to be of no importance for the form of long-distance yich two solutions coexisone is deprived of the necessity

behavior of the correlation functio®(R) it may lead 10 (5 make the choice between them since one of these solu-
some quantitative changes. Unfortunately it is not easy 45 is unstable. is not realized.

check how strong they are since, if the second-order correc- Therefore the more general principles should be applied
tions are taken into account)(q) cannot remain indepen- anq the established point of view is that in the situation with
dent of the momenta. The only thing we have been able t¢ne yeplica symmetry breaking one always has to look for the
check is that at low enough temperatures the second-ordggytion with the maximal free enerdyin the domain where
correction to the free energy becomes much smaller than th@e sojution with the one-step replica symmetry breaking ex-
first-order contribution. ists it always has the larger free energy and since it is always
For y<1 andK<1/In(1/y) when Eq.(130 reduces to staple such choice is not in contradiction with the stability
A~ vyA_ the second-order term in the expression for the freerequirements.
energy per replica The coexistence of two stable solutions one of which is
replica-symmetric whereas the other corresponds to the one-
step replica symmetry breaking is known to occur also in

1 so-calledp-spin spherical model of a spin glass with infinite
fo=Ilim—=F, (154 interaction rangé® In this system the choice of the replica
n - 2T
n—0 symmetry breaking solution is supported also by the results

of the self-consistent dynamic approdtivhich shows that
is dominated by the contribution from the bound pairs ofthe system of equations for the response and correlation
charges and after substitution 6°(q) of the form (1120  function in the domain of the phase diagram where the rep-
can be estimated as lica symmetry breaking can occur does not allow for an er-
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godic solution(which can be associated with the replica- border(147) of the stability interval fom.
symmetric solution of the replica representajion This property is known to be a common feature of all the
The application of the same approach to the madgl models in which the one-step replica symmetry breaking
also predicts that in the low-temperature phase the ergodiakes place. The list of examples includes in particular
solution of the self-consistent dynamic equations does nap-spin Ising®3° and p-spin sphericaP® versions of the
exist!® This gives an additional support to the choice of theinfinite-range spin glass. One of the consequences of such a
replica symmetry breaking solution for the description of thedescrepancy is that in the case when the transition is discon-
system in replica representation. But this support is probablyinuous(in terms of the gap\) the dynamic approach pre-
not so strong as in the case of thespin spherical spin-glass dicts the phase transition at a higher temperature that follows
model, since in the spin-glass model with infinite interactionfrom the consideration of the extremal replica symmetry
range the equations of self-consistent dynamics are supposeeeaking solution. In the modél) considered in this work
to give the exact description of the system whereas in thehis happens foyy>1 whereas fory<1 the gap appears in a
case of the mode(l) they correspond to keeping only the continuous way and the predictions of both approaches for
lowest-order nontrivial terms in the complete equations forthe position of the phase-transition line coincide with each
the response and correlation functions. Since SCHA can bgther. The reasons for the existence of such discrepancy be-
described in exactly the same termls.allso corregponds 10 wween the predictions of the two methodshich for the
keeping only the lowest-order nontrivial term in the self-j qnite range systems both are supposed to provide the exact
consistent eq_uqtlon—but in replica representatitve pre- description are not very well understood.
dictions and limitations of both these approaches can be ex- Recently a suggestion has been put fordtHat in the

pe(I:rt]eg;g bf/ I\r/]v:%n;\?ecgggvsvﬁot?]i?rlﬁi Vg'rt: dﬁ:?g;] (Z[PesréH p case of one-step replica symmetry breaking one should look

for the instability of the replica-symmetric solution is invali- ng)tthfor the T?mtmhum_but f]f)trhtheblmlr;mum ?Lthetfrsle entlargy

dated if the renormalization of the fugacity is taken into ac-V'th respect o the size of the ockmong the stable solu-
et|ons). Such an assumption allows one to eliminate the

count. Therefore it may be important to check if the same' X . X
does not happen with the prediction of the self-consistenfliSCrepancy with the predictions of the self-consistent dy-

dynamic approach for the dynamic instability of the ergodicn@mic approach but only in the narrow part of phase diagram
solution at low temperaturés. in which the free energy of the marginal solution correspond-
The higher-order corrections to the dynamic correlationind t0 Mnin(K) is lower than the free energy of the replica-
function have been considered by Goldshmidt and Scfaubsymmetric solution. We have checked numerically for the
and by Tsai and Shaptf. These authors have developed in model (7) that in the domairkK <1 where the upper bound
the framework of the dynamic description the renormaliza{140 for m is not meaningless the free energy given by
tion scheme which produces for the static correlation funcSCHA is always lower for m=mg.(K) than for
tion the same renormalization-group equations as have been=m,,,(K) and so the principle that the dynamic equations
earlier found in the replica approach for the description ofchoose the solution with the lowest free energy among the
the replica-symmetric solutiof?:! Unfortunately in Refs. stable solutions does not seem to work.
14,16 the second-order contribution to the renormalization Sjnce we have shown that the higher-order corrections do
has been found only for the renormalization of the persistenfiot change the prediction of SCHA for the logarithmical
part of the time-dependent correlation functiomhich al-  divergence of the correlation function in the low-temperature
lows one to establish the agreement with the results of thghase, the numerical simulations may be helpful to distin-
replica approach whereas in the renormalization of the re- guish between the replica symmetric and replica symmetry
sponse function only the first-order contribution has beerpreaking solutions. The simulations of the random phase dis-
considered. Therefore such an approach may turn out to hgete Gaussian modéf*! and of the random phase sine-
of the same leval of reliabilty as the self-consistent dynamiqordon modé? [both of which can be expected to demon-
approacff since both of them take into account only the strate the same properties as the madg) have confirmed
lowest order nontrivial contributions to the dynamic equa-that in the low-temperature phase the slope of the curve
tions. Moreover the analysis of Refs. 14 and 16 is performed(R) versus InRincreases with increase Bf Although the
in terms of frequency-dependent response and correlatioguthors of Refs. 18, 41, and 42 make the suggestions that the
functions which makes it rather Complicated jUSt to check ifobserved behavior is Compatib|e with one or another theo-
their time dependence is compatible with what should bgetical prediction, the absence of the agreement between the
expected for the ergodic solutions of the equations for purelynterpretations testifies rather that the additional simulations
relaxational dynamiCﬁn the same fashion as is done in the may be needed to resolve the difference between the |oga_

self-consistent dynamic approaefi). rithm squared and the logarithm with increasing slope.
It should be noted that although the form of the static

correlation function in the low-temperature phase predicted

by the nonergodic solution of the self-consistent dynamic

equations is th_e same as pre_dlcted by the r_epllca symmetry ACKNOWLEDGMENTS
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