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The simplest model of a vortex glass is considered which is applicable for the description of a two-
dimensional uniaxial vortex crystal formed by the fluxon lines in a large area Josephson junction with inho-
mogeneous width. The analysis is performed in replica representation in terms of a free-energy functional
which depends on the renormalized correlation function. The properties of different solutions of the Dyson
equation are considered, the main attention being devoted to investigating the stability of these solutions. In
particular the solution with the one-step replica symmetry breaking which corresponds to the absolute maxi-
mum of free energy is shown to be always stable~when it exists at all!. The unimportance of higher-order
corrections for the form of the asymptotic behavior of the correlation function in the phase with the one-step
replica symmetry breaking is also demonstrated.

I. INTRODUCTION

The discovery of the high-Tc superconconducting materi-
als have essentially increased the possibilities for the experi-
mental observations of various phenomena related with the
presence of vortices in superconductors~vortex lattice melt-
ing, pinning, creep and so on!. This has led to the active
development of theoretical investigation of these phenomena
and the appearance of many new ideas~for a recent review
see Ref. 1!. In particular a suggestion has been made that at
low temperatures a phase should exist in which the motion of
the vortices is quenched by disorder and therefore the linear
resistance is absent.2,3 The properties of this phase~including
the multitude of metastable states separated by the diverging
barriers! are expected to be more or less analogous to those
of widely discussed infinite-range spin-glass models4 and
therefore it is usually called a vortex glass.

It has been suggested2,5 that the simplest model which
allows one to analyze the large scale properties of a vortex
crystal ~or charge-density wave! interacting with a random
potential can be described by the Hamiltonian

H5E dDr F J2 ~¹u!21V1~r !cosu~r !1V2~r !sinu~r !G ,
~1!

where the variableu represents the smoothly varying com-
ponent of the displacement.

The first term in Eq.~1! describes the elastic energy of a
vortex crystal which is chosen in the simplest possible form,
whereas the second term describes the most relevant contri-
bution to the interaction of a vortex crystal with a random
potential.2,5 The distribution of a random potential has to be
invariant with respect to arbitrary shift ofu, therefore the
distribution of the functionsV1(r ) and V2(r ) can depend
only onV1

2(r )1V2
2(r ). The simplest choice is to consider the

Gaussian distribution with local correlations the parameters
of which are defined by

Vi~r !50; Vi~r !Vj~r 8!52Yd i jd~r2r 8! ~ i , j51,2!.
~2!

Here and further on an overbar designates the average over
disorder, whereas the average over thermal fluctuations will
be denoted by the angular brackets.

The model~1! takes into account only the uniaxial dis-
placements of the vortices. WhenD52 it can be used to
describe a vortex crystal formed by the fluxon lines in a large
area Josephson junction to which the magnetic field is ap-
plied in parallel to the junction plane, the random potential
being related with the inhomogenities in the width of the
junction. The caseD53 corresponds to the description of a
vortex crystal in a superconductor with well developed lay-
ered structure in situation when the magnetic field is parallel
to the layers. The uniaxial model~1! can be generalized to
incorporate the multicomponent displacements6,7 but the
properties associated with the glassy behavior can be ex-
pected to be present already in the simplest uniaxial case.

In the general situation the most important drawback of
the model~1! is that it does not take into account the possi-
bility of formation of dislocations. But in the case of a two-
dimensional uniaxial vortex crystal formed by the fluxon
lines the dislocations would correspond to the end points of
these lines and therefore cannot exist. In the present article
we concentrate exclusively on the two-dimensional uniaxial
case for which the description of flux lattice pinning with the
help of Hamiltonian~1! is rather accurate.

Another possible application of the two-dimensional ver-
sion of model~1! is the description of crystal growth in pres-
ence of quenched disorder.8 But probably the most important
reason for the investigation of this model is that it is one of
the few low-dimensional systems which presumably demon-
strate the glassy properties but allow for application of dif-
ferent kinds of analytical treatment which take into account
the fluctuations.

In terms on a unit vector

d5~cosu,sinu!, ~3!

the Hamiltonian~1! reduces to the form

H5E dDr F J2 ~¹d!21V~r !d~r !G , ~4!
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corresponding to theXY model with random field
V5(V1 ,V2). However since we assume the variableu to be
continuous and uniquely defined the model~1! should be
identified with the random fieldXY model in which the cre-
ation of vortices is prohibited. In terms of a vortex crystal the
vortices of theXY model correspond to dislocations.

The first wave of interest to the two-dimensional version
of model ~1! has developed precisely in the context of the
random-fieldXYmodel.9–14After Houghtonet al.9 had dem-
onstrated that the anharmonic terms in Eq.~1! are irrelevant
at high temperatures, but become relevant at low tempera-
tures, the more systematic renormalization-group description
of the phase transition has been developed by Cardy and
Ostlund10 and Goldschmidt and Houghton.11 The difference
between the two phases manifests itself in the
asymptotic behavior of the correlation function

C~R!5^@u~r1R!2u~r !#2&, ~5!

which in the high-temperature phase diverges logarithmi-
cally ~like in the absence of disorder! whereas in the low-
temperature phase the renormalization-group equations pre-
dict thatC(R) has to diverge as the square of logarithm.8,12

The predictions of the renormalization-group approach
developed in the framework of replica representation turned
out to be in agreement with the results of the real-space
renormalization procedure suggested by Villain and
Fernandes13 and with the dynamic renormalization-group
analysis of Goldschmidt and Schaub.14

Recently it has been shown with the help of self-
consistent harmonic approximation~SCHA! that in the low-
temperature phase the replica symmetry breaking can
occur.6,7 Such a possibility is not taken into account in the
renormalization-group calculations9–11 since they explicitly
assume the situation to be replica-symmetric. SCHA predicts
that the asymptotic behavior of the correlation function~5!
should be logarithmic also in the low-temperature phase, the
only difference with the high-temperature phase being in the
temperature dependence of the prelogarithmic factor.6,7 The
analogous behavior of the static correlation function in the
low-temperature phase is also predicted by the self-
consistent dynamic analysis,15 which in contrast to the dy-
namic renormalization group14,16 allows ~and requires! for
the possibility of the fluctuation-dissipation theorem break-
ing.

So far there is no complete agreement on the meaning
of the contradiction between the predictions of the
renormalization-group analysis and SCHA. The tendency ex-
ists to assume17,18 that since the renormalization scheme is a
much more systematic approach than the variational proce-
dure incorporated in SCHA, the former should be more
trusted than the latter.

In the present work we suggest~Sec. II! that both ap-
proaches can be understood in the framework of the same
general scheme which consists in considering a free-energy
as a functional of the renormalized correlation function.19,20

This correlation function has to satisfy a Dyson equation
which can be obtained by a variation of a free energy func-
tional and contains the infinite sequence of diagrams. The
discrepancy between the predictions of different approaches
appears because in the renormalization-group calculations of

Refs. 9–11 and in the SCHA of Refs. 6 and 7 simply the
different solutions of this complex equation are considered
which can coexist at the same temperature. And although
one of these solutions is known more accurately than the
other this does not prove that the second one does not exist at
all.

To choose which of the two solutions really describes the
properties of the system additional arguments may be
needed, the simplest of which may be related with the sta-
bility of these solutions. The solution which correctly de-
scribes the properties of the system cannot be unstable with
respect to small variations.4

Giamarchi and Le Doussal7 have shown that in the frame-
work of SCHA the replica-symmetric solution is unstable
and therefore the choice between the two solutions should be
made in favor of the replica symmetry breaking solution. But
since the form of the replica-symmetric solution is known
much more accurately that the simplest possible form sug-
gested by SCHA, it is certainly important to check if this
solution remains unstable when the renormalization effects
are taken into account. We discuss this problem in Sec. IV
after rederiving in Sec. III the renormalization-group equa-
tions in the form which simplifies their application in the
investigation of the stability problem.

In Sec. IV we consider the two sources for the instability
of the replicon modes~only one of which can be discussed in
terms of SCHA! and show that although each of them in the
absence of the renormalization corrections leads to the insta-
bility of the replica-symmetric solution, the inclusion of the
renormalization effects removes the instability. In the situa-
tion when both sources of the instability are present simulta-
neously~as they always are in the real system! our approach
allows only to conclude that the replica-symmetric solution
has to remain stable at least in some finite interval of tem-
peratures below the transition temperature.

The stability of the other solution, which is the solution
with the one-step replica symmetry breaking, is investigated
in Sec. V C where we find the interval of the possible sizes
of the block in which this solution is stable. The extremal
point corresponding to the absolute maximum of free energy
always belongs to this interval. Thus, at least in some part of
phase diagram both coexisting solutions of the Dyson equa-
tion are stable so the choice between them can rely only on
the comparison of their free energies.

The results presented in Sec. V~devoted to the replica
symmetry breaking solution! include also the more detailed
description of the phase diagram predicted by SCHA which
shows that the phase-transition line is split by a singular
point into two segments with different critical behavior. And
in Sec. V D we demonstrate that the higher-order corrections
do not change the form of the asymptotic behavior of the
correlation function corresponding to the solution with the
one-step replica symmetry breaking with respect to what is
predicted by SCHA. Section VI is devoted to a short discus-
sion of the results.

II. FREE ENERGY AS A FUNCTIONAL OF THE
RENORMALIZED CORRELATION FUNCTION

The replica approach21,22 is based on a simple identity:

lnZ5 lim
n→0

1

n
~Zn21!, ~6!
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which allows one to calculate the average over disorder of
the free energy of the system by calculating the average of
the partition function ofn replicas of the same system~at the
end of calculationn should be set equal to zero!. For the
model ~1! the result of such averaging can be rewritten as a
partition function corresponding to the Hamiltonian:

H5E d2RF J2(a ~¹ua!22Y(
aÞb

cos~ua2ub!G , ~7!

where the replica indicesa and b run from 1 ton. In the
second sum the constant term corresponding toa5b has
been for simplicity omitted. We assume that the factor 1/T is
included into the definition of the original Hamiltonian~1!,
so J}1/T andY}1/T2.

Hamiltonian~7! can be rewritten in a more general form
as

H5
1

2E d2q

~2p!2(a,b @G0
21~q!#abua~q!ub~2q!

2YE d2R(
s
expF i(

a
saua~R!G , ~8!

where

@G0
21~q!#ab5G0

21~q!dab; G0
21~q!5Jq2 ~9!

and the set ofn-dimensional vectorss consists ofn(n21)
vectors:

sa5H 1 for a5a,

21 for a5b,

0 for aÞa,b,

~10!

which can be numbered by two indicesa and b
(1<a,b<n) not equal to each other.

Expansion of the partition function corresponding to the
Hamiltonian~8! in powers of the anharmonic term allows to
get rid of the continuous variablesua(R) ~by performing a
Gaussian integration! and to rewrite it as a partition function
of a Coulomb gas:

HCG5
1

2(i , j (
a,b

si
aG0

ab~Ri2Rj !sj
b1N ln~1/Y! ~11!

formed by the vector chargessi .
10 HereN is the total num-

ber of charges in a given configuration.
On the other hand the analogous expansion~in powers of

the fugacityY) of the free energy produces a series with the
same structure as has been constructed by Amitet al. for the
free energy of the one-component sine-Gordon model.23 This
expansion

F̃$Ĝ0~q!,Y%5 (
p50

`

F̃p$Ĝ0~q!,Y%; F̃p$Ĝ0~q!,Y%}Yp,

~12!

in which the zeroth-order term

F̃0$Ĝ0~q!%5
1

2E d2q

~2p!2
ln detĜ0

21~q! ~13!

is the free energy corresponding to the harmonic part of the
Hamiltonian~8!, can be used as a formal definition of a free
energy as a functional of the bare correlation function
G0
ab(q) and fugacityY. Instead of introducing diagrammati-

cal notation it will be more convenient in the following to
work directly with explicit expressions for the low-order
terms in different expansions.

It is not hard to notice that since the first term in Eq.~8! is
harmonic the renormalized correlation function of the repli-
cated system

Gab~q![^ua~q!ub~2q!& ~14!

can be found by calculating a variation of the free energy
with respect to the inverse of the bare correlation function:

Gab~q!58p2
dF̃

d@G0
21~q!#ab

. ~15!

The form of Eq.~15! implies that in terms of the thermody-
namics@G0

21(q)#ab andGab(q) are conjugate to each other
and therefore with the help of the Legendre transformation
the free energy can be expressed as a functional of
Gab(q):19

F5F0$Ĝ0~q!,Ĝ~q!%1F int$Ĝ~q!,Y%;

F int5 (
p51

`

Fp$Ĝ~q!,Y%; Fp}Y
p ~16!

In terms of the diagrammatic expansion the Legendre trans-
formation of Ref. 19 reduces to the exclusion of the diagrams
which can be decomposed into two parts by breaking two
lines, whereas the form of the zeroth-order term is changed
into

F05
1

2E d2q

~2p!2
„ln detĜ21~q!

2Sp$@Ĝ21~q!2Ĝ0
21~q!#Ĝ~q!%…. ~17!

Only the zeroth-order term in expansion~16! depends on the
bare correlation functionG0

ab(q), whereas all the higher-
order terms, starting from

F152Y(
s1

expF2
1

2(a,b s1
aGab~R50!s1

bG
[2Y(

s1
expS 2

1

2
G 11D ~18!

and

F252
Y2

2 (
s1 ,s2

E d2R2expS 2
1

2
G 112

1

2
G 22D

3Fexp~2G 12!2
1

2
G 12

2 21G ~19!

depend only on the renormalized correlation function
Gab(q), or to put it more precisely on the expressions of the
form
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G i j5(
a,b

si
aGab~Ri2Rj !sj

b , ~20!

which were introduced in Eqs.~18! and ~19! to make them
more compact.

In terms of the Coulomb gas Eq.~20! describes the inter-
action energy of two vector chargessi and sj , whereas the
energyE0 of a single charge is given by

E05
1

2
G i i5

1

2(a,b si
aGab~R50!si

b . ~21!

Since we keep explicitly the summation oversi in different
expressions it is always possible to identify these expressions
with a particular combination of charges to which they cor-
respond. For example Eq.~18! describes the contribution to
the free energy from the unbound charges whereas Eq.~19!
includes both the contribution from the bound pairs of
charges and from the interactions between the unbound
charges.

The main property of the functional~16! is that at its
stationary points, that is whenGab(q) satisfies the Dyson
equation

@G21~q!#ab5@G0
21~q!#ab1Sab$Ĝ~q!%, ~22!

which can be obtained by the variation of Eq.~16! with
respect toGab(q), the self-energy partSab$Ĝ(q)% being re-
lated to a variation ofF int :

Sab$Ĝ~q!%58p2
dF int

dGab~q!
; ~23!

the free energy defined by Eq.~16! coincides with the free
energy defined by the original functional~12!.19 In the gen-
eral case Eq.~22! can have different solutions corresponding
to different values of free energy. That means that the sum-
mation of some sequence of divergent diagrams in the func-
tional ~12! cannot be performed in the unique way and the
result can depend on the regularization. In that case the use
of the functional depending on the renormalized correlation
function simplifies the consideration removing some un-
physical divergencies right from the beginning.

For the case of the Hamiltonian~8! the first two terms in
the expansion for the self-energy partSab(q) have the form

S1
ab~q!58p2

dF1

dGab~q!
5Y(

s1
s1
as1

bexpS 2
1

2
G 11D ~24!

and

S2
ab58p2

dF2

dGab~q!
5Y2(

s1 ,s2
E d2R2expS 2

1

2
G 112

1

2
G 22D

3H s1as1bFexp~2G 12!2
1

2
G 12

2 21G1s1
as2

bcos~qR!@exp~2G 12!2G 12#J . ~25!

SinceGab entersF int only through the combinations of the
form ~20! and all the vectorssobey the relation(as

a50, the
expression for the self-energy partSab(q) always satisfies
the relation

(
a

Sab~q!5(
b

Sab~q!50, ~26!

which holds also in any particular order in fugacity.
In Refs. 6 and 7 the same problem has been approached

by calculating a variational free energy

FVAR5FTR1^H2HTR&TR, ~27!

corresponding to the Hamiltonian~7! with the help of the
harmonic trial Hamiltonian:

HTR5
1

2E d2q

~2p!2(a,b @G21~q!#abua~q!ub~2q!. ~28!

In Eq. ~27! FTR stands for the free energy for the trial Hamil-
tonian~28! and^ . . . &TR for the thermodynamic average cal-
culated with the help ofH TR. Both terms can be calculated
exactly. Such an approach, which is also known as the self-
consistent harmonic approximation~SCHA!, has proved to
give a correct qualitative description of both phases of the

two-dimensional sine-Gordon model.24 Recently it has been
applied by Mezard and Parisi25 to the problem of fluctuating
manifold in random media.

Substitution of Eq.~28! into Eq. ~27! shows that the ex-
pression for the variational free energy coincides with the
sum of the two lowest-order terms in the expansion~16!:

FVAR5F01F1 , ~29!

and therefore the application of this particular form of the
variational approach~to the system which allows to express
its free energy as a functional of the renormalized correlation
function! should be considered not as an uncontrollable ap-
proximation based on unjustified assumptions but rather as
the first step of a more general and systematic treatment. The
importance of this step is related to the fact that the self-
consistent equation

@G21~q!#ab5@G0
21~q!#ab1S1

ab$Ĝ~q!% ~30!

obtained by the variation of the expression~29! for the free
energy@which obviously is just a simplest possible trunca-
tion of the general Dyson equation~22!# can have not only
replica-symmetric but also replica symmetry breaking
solutions.6,7
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We discuss the properties of the replica symmetry break-
ing solutions of Eq.~30! in Sec. V after investigating the
stability of the replica-symmetric solution. But it has been
necessary to explain the meaning of SCHA before that, since
so far the stability problem has been discussed only in the
framework of this particular approximation.7

III. THE REPLICA-SYMMETRIC SOLUTION

According to Eq.~26! when the symmetry with respect to
a permutation of replicas~the replica symmetry! is not bro-
ken the only possible form of the self-energy matrix is

Sab~q!5~nd ab21!s~q!. ~31!

For such a form ofSab(q) the inversion of Eq.~22! in the
limit of n→0 gives

Gab~q!5G0~q!d ab1G0
2~q!s~q!. ~32!

Since the sum of the componentssi
a of any vector charge

si is equal to zero, the second term in the right-hand side
~rhs! of Eq. ~32! drops out from any expression of the form
~20!, which therefore is reduced to

G i j5~sisj !G0~Ri2Rj !. ~33!

The form of Eq.~33! shows that the interaction of vector
charges in the replica-symmetric case always remains un-
renormalized. The origin of this property can be traced back
to the statistical invariance of the initial problem with respect
to the arbitrary uniform translation inu.

As a consequences(q) drops out from all the terms of
the expansion for the free energy~with the exception of the
zeroth-order term! and from the rhs of the Dyson equation
~22!, which in the replica-symmetric case can be reduced to
the scalar form

s~q!528p2
d f int

dG0~q!
, ~34!

where

f int5 lim
n→0

1

n
F int ~35!

is a disorder-induced contribution to the free energy per rep-
lica. Therefore the problem of solving the Dyson equation in
the replica-symmetric case does not exist—in that case this
equation is reduced to the explicit expression for the self-
energy function. But since this expression contains an infi-
nite number of terms there remains a problem of the summa-
tion of all the essential contributions to it.

In the replica-symmetric case the expression for the en-
ergy of a single vector charges

E05G0~R50!5E d2q

~2p!2
G0~q!, ~36!

is logarithmically divergent and therefore the first-order con-
tribution to the replica-symmetric self-energy function

s1~q!52Yexp@2E0# ~37!

in the limit of infinite system size is equal to zero. The first
nonvanishing contribution tos(q) appears in the second-
order in fugacity:

s2~q!5Y2E d2R~222 cosqR!W~R!, ~38!

whereW(R)5exp@2Ep(R)# is the statistical weight which
can be associated with the neutral pair of charges whose total
energyEp(R) is given by the same expression

Ep~R!52@G0~0!2G0~R!# ~39!

as the correlation functionC(R) of the pure system.
For R@a ~where a is the cutoff length defined by the

form of the cutoff in momentum space! Ep(R) behaves loga-
rithmically

Ep~R!'4K ln
R

a
; K5

1

4pJ
}T, ~40!

and thereforeW(R) is characterized by an algebraic behav-
ior:

W~R!'S aRD 4K. ~41!

For example, if a sharp cutoff atuqu5qc is assumeda and
qc are related as

aqc52e2ge'1.123, ~42!

wherege is the Euler’s constant.
The only terms which survive in then→0 limit and give

a nonvanishing contribution tos(q) correspond to the neu-
tral pairs of charges (s11s250). This is also true in all the
higher orders: whenG0(R50) is divergent only the terms
corresponding to the neutral combinations of charges are fi-
nite.

For smallq the expression~38! can be approximated as

s2~q!'Bq2, ~43!

where

B5pY2E dR R3W~R!. ~44!

Comparison with Eq.~41! shows that the integral in Eq.~44!
is convergent only forK.1. ForK<1 this integral diverges
and therefore the approximation~43! is no longer valid. Ac-
tually for 1

2,K,1 the straightforward calculation of the in-
tegral in Eq.~38! gives

s2~q!'hq4K22 ~45!

but since the same divergence appears also in the higher
orders of the expansion, this answer has to be corrected.

Let us call the pair of chargessj andsl , the total charge of
which si5sj1sl belongs to the original set of elementary
charges~10!, the reducible pair. Since for the distances much
larger thanRj2Rl the reducible pair is indistinguishable
from the single chargesi , it is possible to take into account
the important sequence of higher-order diagrams by intro-
ducing the scale dependent fugacityY(R):
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Y~R!5Y12p~n22!E
0

R

dR8Y2~R8!W1/2~R8!. ~46!

The factor (n22) in the rhs of Eq.~46! stands for the num-
ber of reducible pairs which can imitate given elementary
chargesi , whereas the weight factorW1/2(R) appears be-
cause the energy of the reducible pair of charges differs from
the energy of a single charge by the amount equal to
1
2Ep(Rj2Rl).
By differentiating both sides of Eq.~46! it can be reduced

to the differential equation

dY~R!

dR
524pRY2~R!W1/2~R!, ~47!

~where we have putn to zero! the solution of which can be
written as

Y~R!5@Y2114pI ~R!#21; I ~R!5E
0

R

dR8R8W1/2~R8!.

~48!

ForW(R) of the form~41! the functionI (R) can be approxi-
mated as

I ~R!'E
a

R

dR8R8S aR8D
2K

5H a2

2~12K ! F SRa D 222K

21G for KÞ1

a2ln~R/a! for K51.

~49!

The choice of the lower integration limit in Eq.~49! implies
that the bare value of fugacityY can be associated with the
smallest possible length in the system—the cutoff lengtha.

The more familiar form of the differential equation de-
scribing the renormalization of the fugacity10

dy

dl
5~222K !y12p~n22!y2 ~50!

@where l5exp(R/a)# can be recovered by introduction of a
rescaled fugacity:

y5a2~R/a!222KY~R!, ~51!

but in the following it will more convenient to work with the
unrescaled variables since all the expressions which are of
interest to us have a more transparent form in terms of these
variables.

If the results of the field-theoretical analysis of Gold-
schmidt and Houghton11 are translated into the language of
the unrescaled variables the main conclusion is that they re-
veal no other divergencies in addition to those which can be
described by the renormalization of fugacity according to Eq.
~47!. Therefore to take into account all the important higher-
order corrections to any expression it is sufficient to substi-
tute the constant fugacity by the renormalized one. For ex-
ample Eq.~38! for the second-order contribution to the self-
energy part should be substituted by

s~q!5E d2R~222 cosqR!Y2~R!W~R!. ~52!

It can be seen from Eq.~49! that the behavior ofY(R) for
R→` depends essentially on whetherK is smaller or larger
than 1. ForK.1 the renormalized fugacityY(R) tends to a
finite limit as R goes to infinity. That means that Eq.~52!
corresponds to the same asymptotic behavior ofs(q) as sug-
gested by Eq.~43! with B given by

B5pE
0

`

dR R3Y2~R!W~R!. ~53!

On the other hand forK,1 the renormalized fugacity
Y(R) tends to zero as (a/R)222K which makes the integral
in Eq. ~53! diverge logarithmically. In the nontruncated ex-
pression~52! this divergence is cut off atR;q21 giving in
theq→0 limit

B'
~12K !2

4p
ln

1

aq
. ~54!

For K→110 the value ofB tends to the finite limit
Ya2/4.

To avoid confusion maybe it is worthwhile to emphasize
once again that we are using the renormalized but unrescaled
fugacity Y(R), whereas the behavior of the rescaled~and
renormalized! fugacity y( l ) is exactly the opposite:y( l )
goes to zero~for l→`) in the high-temperature phase
whereas in the low-temperature phase it has a finite limit.10,11

In the disordered systems it is important to distinguish
between the full correlation function~5! which in terms of
the replicated system is given by

C~R!5E d2q

~2p!2
~222 cosqR! lim

n→0
F1n(a Gaa~q!G

~55!

and its irreducible part

Cir~R!5^@u~r1R!2u~r !#2&2^u~r1R!2u~r !&2

5E d2q

~2p!2
~222 cosqR! lim

n→0
F1n(a,b Gab~q!G . ~56!

Substitution of Eq.~32! into Eq. ~56! shows that in the
replica-symmetric case the irreducible part of the correlation
function remains exactly the same as in the absence of dis-
order:

Cir~R!5E d2q

~2p!2
~222 cosqR!G0~q!'4K ln~R/a!

~57!

that is unrenormalized. On the other hand, the long-distance
behavior of the reducible part of the correlation function:

Cr~R!5^u~r1R!2u~r !&2

5E d2q

~2p!2
~222 cosqR! lim

n→0
F1n(aÞb

Gab~q!G
~58!

is determined bys(q):
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Cr~R!5E d2q

~2p!2
~222 cosqR!G0

2~q!s~q!, ~59!

and therefore is qualitatively different forK.1 andK,1. In
the high-temperature phase (K.1) in which for q→0 the
approximation~43! can be used the reducible part of the
correlation function diverges logarithmically:

Cr~R!'4K1ln~R/a!; K15
B

4pJ2
, ~60!

whereas in the low-temperature phaseB is itself diverging
according to Eq.~54! and the asymptotic form ofCr acquires
additional logarithmical factor

Cr~R!'2K2~12K !2ln2~R/a!. ~61!

Note that forK→1 the prefactor in Eq.~61! coincides
with the one which can be deduced from the renormalization
equations of Goldschmidt and Houghton11 which have been
derived in a much more systematic way than presented here
and accurately take into account the explicit form of the cut-
off, both in the coordinate and in the momentum space. On
the other hand, the value of the prefactor cited in Refs. 17
and 26 as being universal is larger by a factor of 4.

In the terms of the vector Coloumb gas the phase transi-
tion between the two phases described above is very peculiar
since in both of them the charges are bound in neutral pairs
and their interaction is exactly the same. Usually the phase
transition in a Coulomb gas can be associated with the dis-
sociation of the neutral pairs of charges which leads to for-
mation of a ‘‘plasma’’ phase in contrast to a ‘‘dielectric’’
one in which all the charges are bound in pairs. In the present
model this can happen only if the replica symmetry breaking
is allowed.

IV. STABILITY ANALYSIS
OF THE REPLICA-SYMMETRIC SOLUTION

To investigate the stability of any solution of the Dyson
equation~22! one has to consider the second variation of the
free-energy functional~16!. The result can be again ex-
pressed as an expansion in powers of fugacity:

Lab,cd~q,q8![2~2p!4
]2F

]Gab~q!]Gcd~q8!

5 (
p50

`

Lp
ab,cd~q,q8!; Lp

ab,cd~q,q8!}Yp.

~62!

In order to simplify some equations we have included addi-
tional factor 2(2p)4 in the definition of the Hessian
Lab,cd(q,q8).

The zeroth-order term in Eq.~62! is diagonal in momen-
tum:

L0
ab,cd~q,q8!5~2p!2d~q2q8!@G21~q!#da@G21~q!#bc,

~63!

whereas the first-order term does not depend on momenta at
all:

L1
ab,cd~q,q8!52

Y

2(s sasbscsd

3expF2
1

2(e, f s
eGef~R50!sf G . ~64!

In the replica-symmetric case Eq.~64! reduces to

L1
ab,cd~q,q8!52

1

2
Pabcds1 , ~65!

where the matrix

Pabcd5
1

2(s sasbscsd ~66!

is symmetric with respect to all possible permutations of
indices, whereass1 is the first-order contribution~37! to the
self-energy functions(q).

The stability of replica-symmetric solution has been con-
sidered by Giamarchi and Le Doussal7 in the framework of
SCHA. These authors have noticed that although in two di-
mensionsE0 is given by the logarithmically divergent ex-
pression and therefore in the limit of infinite system size
s1 is always equal to zero, the presence ofs1 in Eq. ~65! can
still be of importance if some regularization procedure is
used. It will be convenient to rederive here the results of Ref.
7 in the form which allows for the inclusion of the renormal-
ization effects.

To check the stability of any solution of the Dyson equa-
tion one has to look for the lowest eigenvalue of the equa-
tion:

lgab~q!5E d2q

~2p!2 (
c,d

Lab,cd~q,q8!gcd~q8!. ~67!

In SCHA only the two lowest-order contributions to
Lab,cd(q,q8) @given by Eqs.~63! and ~65!# should be taken
into account. The eigenvalues of the matrixP̂ defined by Eq.
~66! are equal to 0,n, 2n, and 2. The last one has degen-
eracyn(n23)/2 and corresponds to the family of eigenstates
which includes all the matricesCab satisfying the con-
straints:

Cab5Cba; Ca5b50; (
a

Cab5(
b

Cab50.

~68!

These eigenstates are usually referred to as the replicon
modes. In the limit ofn→0 they are the only modes which
can be dangerous for the stability of a replica-symmetric so-
lution with respect to a replica symmetry breaking.

For replicon modes, that is forgab(q) of the form

gab~q!5Cabg~q! ~69!

@whereCab satisfies the constraints~68!#, the matrix equa-
tion ~67! reduces to a scalar equation which in SCHA has a
form

lg~q!5L~q!g~q!2s1E d2q8

~2p!2
g~q8!, ~70!
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where

L~q!5G0
22~q! ~71!

gives the spectrum of the replicon modes in absence of dis-
order (s1[0).

The lowest eigenvalue of Eq.~70! l0 should correspond
to the real and rotationally symmetric eigenfunctiong0(q)
for which

E d2q

~2p!2
g0~q!Þ0. ~72!

In that case the eigenfunctiong0(q) can be excluded from
Eq. ~70! which can be rewritten as

E d2q

~2p!2
s1

2l01L~q!
51 ~73!

and thereforel0 can be negative only if the inequality

E d2q

~2p!2
s1

L~q!
.1 ~74!

is correct.
Since the expression in the lhs of inequality~74! is a

product of an infinitely small factors1 and a divergent factor

D5E d2q

~2p!2
1

L~q!
, ~75!

some regularization procedure has to be used to calculate it.
Giamarchi and Le Doussal7 have done it by adding to
G0

21(q) a small massm which in the end of calculation
should be put down to zero. The other possible approach
consists of restricting the integration in Eqs.~36! and~75! by
the same constraintqm,uqu,qc with subsequent consider-
ation of the limitqm→0. With such a form of a regulariza-
tion

s152Y~qm /qc!
2K, ~76!

whereas

D5
1

4pJ2
~qm

222qc
22! ~77!

and therefore

lim
qm→0

@s1~qm!D~qm!#55
` for K,1,

Y

2pJ2qc
2 for K51,

0 for K.1.

~78!

Comparison with Eq.~74! allows then to conclude that for
K,1 the lowest eigenvalue of Eq.~70! is negative and there-
fore the replica-symmetric solution is unstable.7

When deriving Eq.~73!, which allows us to determine if
the lowest eigenvalue of Eq.~67! is negative or not, only the
first two terms of the expansion~62! for the Hessian were
taken into account. An important sequence of higher-order
corrections can be included into consideration if in Eq.~37!
the bare value of fugacity is substituted by a scale-dependent
fugacityY(q):

s1~q!52Y~q!exp@2G0~R50!#. ~79!

In terms of the Coulomb gas representation such substitution
corresponds to a consistent addition to the contribution of a
single charge contributions of the multicharge configurations
which with the increase of scale become equivalent to a
single charge. It seems reasonable to assume that the func-
tion Y(q) should be given by the expression forY(R) in
which the ratio of current and cutoff scalesR/a is substituted
by the inverted ratio of current and cutoff momenta:

Y~q![YSR5a
q0
q D . ~80!

Substitution of Eq.~79! @with Y(q) defined by Eqs.~48!,
~49! and~80!# into the expression in the lhs of inequality~74!
leads to an important change in the behavior forK,1 giving

lim
qm→0

E d2q

~2p!2
s1~q!

L~q!
5

1

~aqc!
2 t, ~81!

where

t54K~12K !<1. ~82!

Comparison with criteria~74! shows that the inclusion of the
renormalization effects removes the instability of the replica-
symmetric state in the low-temperature phase. But this does
not close the stability problem since it is necessary to con-
sider another source for the instability which is maybe even
more evident than the one discussed above, since it can be
noticed even without any regularization. It can be associated
with the neutral charge pairs which are always present in the
system, that is one has to consider the second-order contri-
bution to the Hessian~62! which remains finite even in the
limit of infinite system size.

In the replica-symmetric case this contribution@the gen-
eral form of which can be found by taking the second varia-
tion of Eq. ~19!# acquires a form

L2
ab,cd~q,q8!52

1

2
Pabcdl 2~q,q8!, ~83!

which is characterized by the same dependence on replica
indices as the first-order contribution~65!, whereas its de-
pendence on momenta is contained in the factor

l 2~q,q8!5Y2E d2R~222 cosqR!~222 cosqR8!W~R!,

~84!

which can be also expressed in terms of the second-order
contributions2(q) to the self-energy function

l 2~q,q8!52s2~q!12s2~q8!2s2~q1q8!2s2~q2q8!.
~85!

Since the dependence ofL2
ab,cd(q,q8) on replica indices is

given by the same matrixP̂ as in the case ofL1
ab,cd(q,q8),

the eigenvalue equation for the replicon modes with the help
of the same substituion~69! can be reduced to a scalar form:

lg~q!5L~q!g~q!2E d2q8

~2p!2
l 2~q,q8!g~q8!. ~86!
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According to Eq.~52! in the high-temperature phase the
behavior ofs2(q) at smallq is given by

s2~q!'Bq22Aqn, ~87!

where

n5H 4K22 for 1,K,3/2,

4 for 3/2,K.

Substitution of Eq.~87! into Eq. ~85! shows that only the
second term from Eq.~87! makes a contribution to
l 2(q,q8) whereas the contribution from the first term com-
pletely drops out. The simple power counting allows one
then to conclude that in this case the zeroth-order term~71!
dominates over the second-order term~85! ~at least for small
enough disorder!. At K51 the exponentn becomes equal to
2 and approximation~87! ceases to be valid making the
power counting arguments insufficient. ForK<1 a different
approach should be used.

If g(q) is the solution of Eq.~86! the corresponding ei-
genvaluel is given by the functional

F$g%5
1

I N
~ I 02I 2!, ~88!

where

I N[^gug&5E d2q

~2p!2
g~q!g~2q![E d2Rug~R!u2

~89!

is the normalization integral, whereas

I 0[^gu l̂ 0ug&5J2E d2R~¹2g!2 ~90!

and

I 2[2^gu l̂ 2ug&5E d2R w~R!@g~0!2g~R!#2 ~91!

can be interpreted as the matrix elements of the zeroth- and
second-order contributions to Hessian. To simplify the dis-
cussion of the renormalization effects we have introduced in
Eq. ~91! the notation

w~R!54Y2W~R!. ~92!

The lowest eigenvalue of Eq.~86! l0 corresponds to the
eigenfunctiong0(q) @or g0(R)# which gives the absolute
minimum ofF$g%. Since both expressions~90! and~91! are
rotationally symmetricg0(R) also has to be rotationally
symmetric:

g0~R![g0~R!. ~93!

Substitution into Eq.~88! of any other functiong(R) can
lead only to the increase ofF$g%:

l0,F$g~R!%. ~94!

It is possible to show that forK,1 the second-order con-
tribution to Hessian makes the replica-symmetric solution
unstable by substituting into Eqs.~88!–~91! the arbitrary

wave function with large enough localization radius. For ex-
ample the substitution of the Gaussian wave function

g~R!5
1

Apr
expS 2

R2

2r 2D ~95!

~in which the prefactor is specially chosen to makeI N equal
to one! into Eqs. ~90! and ~91! for K.1/2 gives, respec-
tively,

I 052
J2

r 4
~96!

and

I 254C~K !Y2S ar D
4K

, ~97!

where

C~K !5~122222K!G~122K !. ~98!

For K→1 the factorC(K) has a finite limit:

lim
K→1

C~K !5 ln2'0.693, ~99!

whereas forK→1/2 the factorC(K) diverges. Equations
~96! and~97! can be expected to be valid only forr@a when
the details of the form of the cutoff are unimportant.

Comparison of Eq.~96! with Eq. ~97! shows that for
K.1 ~and r@a) I 2 can be larger thanI 0 only if Y is large
enough. In contrast to that forK,1 for arbitrarily smallY
one can makeF[I 02I 2 negative by chosing a sufficiently
large localization radiusr . The optimal value of localization
radiusr 0 for which the minimum ofF(r ) is achieved can be
found by differentiating F(r ) with respect to r . For
K→120 and not too largeY this optimal radius diverges
according to

ln
r 0
a

}
1

12K
, ~100!

and therefore forK51 the stability of the replica-symmetric
solution has to be determined by its large scale behavior.

But once again the conclusion about the instability of the
replica-symmetric solution forK,1 holds true only if the
renormalization effects are not taken into account. In the
framework of a more general consideration it is possible to
add to the contribution to the Hessian from the neutral pairs
of charges@Eq. ~83!#, the contributions from the multicharge
configurations which on large scales behave themselves in
the same way as neutral pairs by substituting in Eq.~92! the
bare fugacity by the scale dependent one. This changes the
large scale behavior of the factorw(R) into the form

w~R!5S 12K

p D 2 1R4 , ~101!

which in terms of the original problem corresponds to

Keff51; Yeff5
12K

2pa2
. ~102!
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Equations~102! show that the renormalization effects shift
the problem from the region of evident instability into the
marginal situationKeff51.

The direct substitution of the parameters given by Eq.
~102! into Eq. ~97! gives

I 2
I 0

5
ln2

2
t2<

ln2

2
,1, ~103!

which unfortunately does not provide any further insight
since a different form of a trial wave functiong(R) may
produce a larger ratio ofI 2 /I 0 .

But still it turns out possible to prove that the sum of the
operatorsl̂ 0 and2 l̂ 2

R is positively defined. By adding a su-
perscriptR we designate that the renormalization effects are
assumed to be taken into account, that is the kernelw(R) in
the definition~91! of the operatorl̂ 2 is chosen in the form
~101!. We are sticking to the asymptotic form ofw(R) since
our previous estimate has shown that in the marginal case
Keff51 the localization radiusr has to be infinite. Such
analysis becomes even more reliable when the bare value of
Y is smaller thanYeff . In that case according to Eqs.~48! and
~49! the rhs of Eq.~101! gives an upper bound for its lhs and
therefore the application of the asymptotic form~101!
can only decrease the stability.

Since the eigenfunctiong0(R) which corresponds to the
global minimum ofF has to be rotationally symmetric it is
sufficient to discuss the form of this functional only for the
rotationally symmetric functionsg(R). In that case Eq.~90!
can be rewritten as

I 052pJ2E
0

`

dRF 1R S dgdRD 21RS d2gdR2D
2G[I 011I 02,

~104!

where we have omitted the term

2pJ2F S lim
R→0

dg

dRD 22S lim
R→`

dg

dRD 2G ,
since both limR→0(dg/dR) and limR→`(dg/dR) have to be
equal to zero otherwise the integral in Eq.~104! would be
divergent.

On the other hand, the expression~91! for I 2 after the
substitution of the relation

g~0!2g~R!52E
0

R

dR8
dg~R8!

dR8
~105!

with the help of inequality

2
dg~R8!

dR8

dg~R9!

dR9
<Fdg~R8!

dR8 G21Fdg~R9!

dR9 G2, ~106!

can be shown to satisfy

I 2<2pE
0

R

dRFdg~R!

dR G2E
R

`

dR8R82w~R8!. ~107!

For w(R) of the form ~101!

E
R

`

dR8R82w~R8!5S 12K

p D 2 1R . ~108!

Comparison of Eqs.~107! and ~108! with Eq. ~104! shows
that the ratio ofI 2 and the first term in Eq.~104! is never
larger than one:

I 2
I 01

<t2<1, ~109!

and therefore the operatorl̂ 02 l̂ 2
R is positively defined.

Thus we have shown that the inclusion of the renormal-
ization corrections makes the second-order contribution to
the Hessian not dangerous~earlier we have proved the same
for the first-order contribution!. But to consider both mecha-
nisms simultaneously is a more difficult problem. Nonethe-
less the more attentive interpretation of the results obtained
in this section allows us to conclude that we have proved that
both (aqc)

22t l̂ 02 l̂ 1
R andt2l̂ 02 l̂ 2

R are non-negative operators
and therefore for

t

~aqc!
2 1t2,1 ~110!

the operatorl̂ 02 l̂ 1
R2 l̂ 2

R is positively defined. Even if our
calculation has not been accurate enough to extract the cor-
rect numerical factors in front oft and t2 in the inequality
~110! ~most probably they can also depend on the form of the
cutoff!, it still has to be valid for small enought. That means
that at least in some vicinity of the transition point
K2,K,1 ~where 1/2,K2,1) the replica-symmetric solu-
tion has to remain stable.

Recently the analogous investigation of the stability of a
replica-symmetric solution which takes into account the
renormalization effects has been undertaken for thef4 prob-
lem with random field.20,27,28

V. THE SOLUTION WITH ONE-STEP REPLICA
SYMMETRY BREAKING

A. General properties

In Refs. 6 and 7 the simplest nontrivial truncation~29! of
the free-energy functional~16! has been considered which
has been introduced as a result of the application of the
variational approach. Remarkably the self-consistent equa-
tion for the correlation function which is obtained by a varia-
tion of Eq. ~29! allows for the existence not only of the
replica-symmetric solution but also of the solutions with the
broken replica symmetry.

The renormalization-group approaches developed in Refs.
9–11 give no opportunities to discuss such solutions, since
they explicitly assume that the correlation function~or the
charge interaction! remains replica symmetric. It is maybe
worthwhile to emphasize that in the renormalization-group
description the Hamiltonian in the low-temperature phase re-
mains essentially nonharmonic at arbitrarily large scales10

and therefore the problem of finding the correct structure of
the correlation function is in some sense postponed but never
solved.

It has been shown that in the case of the two-dimensional
system with Hamitonian~7! the simplest possible form of a
replica symmetry breaking, namely, the one-step replica
symmetry breaking is realized.6,7 The case of the one-step
replica symmetry breaking corresponds to such a form of a
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self-energy matrixSab(q) when its nondiagonal elements
can acquire only two different values$which it will be con-
venient to denote as2@s (0)(q)1s (1)(q)# and 2s (0)(q)%
depending on whether the two indicesa andb belong to the
same block of the lengthm or not:

Sab~q!5@ns~0!~q!1ms~1!~q!#d ab2s~1!~q!d a8b8

2s~0!~q!. ~111!

The form of the first term in Eq.~111! follows from Eq.~26!.
Here and further on the indices with the prime denote the
number of the block (1<a8,b8<n/m).

For Sab(q) of the form ~111! inversion of Eq.~22! pro-
duces the expression which in the limit ofn→0 reduces to

Gab~q!5G1~q!d ab1
1

m
@G0~q!2G1~q!#d a8b8

1G0
2~q!s~0!~q!, ~112!

where

G1~q!5
1

G0
21~q!1ms~1!~q!

. ~113!

The obvious requirement for the size of the block to be be-
tween 1 andn in the limit of n→0 is transformed4 into

0,m,1, ~114!

the limit of m→1 corresponding to the disappearance of
replica symmetry breaking.

When Eq.~112! is substituted into any expression of the
form ~33! the last term~which is independent on replica in-
dices! always drops out~like it does the analogous term in
the replica-symmetric case!. Therefore the disorder-induced
contribution to free energy per replicaf int can be considered
as a functional ofG0(q) andG1(q). The matrix equation
~22! can be then decoupled into two scalar equations:

s~0!~q!528p2
d f int

dG0~q!
, ~115!

s~1!~q!52
8p2

12m

d f int
dG1~q!

, ~116!

the first of which has the same form as Eq.~34! for the
replica-symmetric solution. Sincef int does not depend on
s (0)(q) we actually have to solve not the system of two
equations but a single Eq.~116! whereass (0)(q) can be
found by substituting the solution of Eq.~116! into Eq.
~115!.

Substitution of Eq.~112! into Eq. ~21! shows that in the
case of the one-step replica symmetry breaking the energy of
a single charge can acquire two different values

E05G1~R50!1
1

m
@G0~R50!2G1~R50!#, ~117!

E15G1~R50!, ~118!

the first of which corresponds to the case when both indices
a and b labeling the vector charges belong to different

blocks, whereas the second corresponds to the case when
these indices belong to the same block. According to Eq.
~113! G1(q)<G0(q) and therefore for 0,m,1,

E0>G0~R50!. ~119!

B. Self-consistent harmonic approximation

In the SCHA only the lowest-order contribution tof int has
to be taken into account which in terms ofE0 andE1 can be
written as

f 15Y@m exp~2E0!1~12m!exp~2E1!#. ~120!

For f int of the form ~120! Eqs.~115! and ~116! reduce to

s1
~0!~q!52Yexp~2E0!, ~121!

s1
~1!~q!52Yexp~2E1!22Yexp~2E0!. ~122!

Since in two dimensionsG0(R50) is logarithmically di-
vergent we can conclude that in the framework of SCHA
s (0)(q) is always equal to zero, whereas according to Eq.
~122! s (1)(q) does not depend onq. Thus instead of consid-
ering the free-energy functional which depends on two func-
tions of q it is sufficient to consider the free energy which
depends only on two variablesD[ms1

(1)/J andm:6

f[ lim
n→0

1

n
@FVAR~D!2FVAR~D50!#

5
J

2 S 1m21D E
0

D

dD8D8
dg~D8!

dD8
1Y~12m!exp@2g~D!#

5
1

8p S 12
1

mDDcln
Dc1D

Dc
1Y~12m!S D

Dc1D D K. ~123!

In the last line of Eq.~123! the function

g~D!5E d2q

~2p!2
1

J~q21D!
, ~124!

which describes the fluctuations’ width for the given value of
the gapD, is assumed to be of the form corresponding to the
sharp cutoff atuqu5qc :

g~D!5K ln
Dc1D

D
; K5

1

4pJ
, ~125!

whereDc5qc
2 .

Variation of the free energy~123! with respect toD re-
produces Eq.~122! which in terms ofD andDc can be re-
written as

D

m
5
2Y

J S D

Dc1D D K. ~126!

If one looks for the maximum of the free-energy functional
~as one is supposed to do in the replica representation! it is
necessary also to take the variation of the free energy with
respect tom, which gives
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Dc

8pm2 ln
Dc1D

Dc
5YS D

Dc1D D K. ~127!

Thus we have obtained for two variablesD andm a sys-
tem of two equations from which they can be found. One can
easily exclude from this system the variablem obtaining a
single equation:

S D

Dc
D 25g lnS 11

D

Dc
D S D

Dc1D D K, ~128!

the properties of the solutions of which depend on the value
of parameter

g5
Y

2pJ2Dc
. ~129!

For J}T21 andY}T22 the parameterg does not depend on
temperature and therefore can be used to characterize the
disorder strength.

For g,1 the only solution of Eq.~128! for K>1 is
D50 but forK,1 the other solution also exists6,7 which for
K→120 is given by

D'Dcg
1/~12K !, ~130!

that is with increase in temperature the value of the gapD
disappears in a continuous way, the singularity in the free
energy being weaker than algebraic~‘‘infinite order’’ phase
transition!. For g!1 Eq. ~130! is applicable not only for
12K!1 but in the whole interval 0<K,1.

For g.1 the value of the gapD decreases with the in-
crease in temperature not so rapidly and atK51 remains
finite and disappears~discontinuously! only at Kc(g).1.
Since substitution of Eqs.~126! and ~127! into Eq. ~123!
gives

f5
J~12m!2D

2m
, ~131!

and on the phase-transition line the values of the free ener-
gies of two phases~one with D.0 and another with
D50) have to coincide, this can happen only whenm51.
This observation allows us to provide, with the help of Eqs.
~126! and ~127!, a parametrical description of phase-
transition line forg.1:

K5
x

ln~11x!
, ~132!

g5
x2

ln~11x! S 11x

x D x/@ ln~11x!#

, ~133!

the value of the gap at the transition being given by
D5xDc .

The form of Eq.~131! suggests that although forg.1 the
gap disappears discontinuously the form of the singularity in
the free energy corresponds to a second-order phase transi-
tion ~the jump in the heat capacity!. This is rather natural
since atm51 one cannot distinguish the phase with the bro-
ken replica symmetry from the phase without it and therefore
the transition cannot be of the first order. Note that the posi-
tion of the tricritical point (g51) coincides with the point at

which the replica-symmetric solution atK51 becomes~in
the framework of SCHA! unstable@Eq. ~78!#. However it
cannot be excluded that the change in the transition type with
the increase of disorder can be an artefact of SCHA.

Substitution of Eq.~112! into Eq. ~56! shows that for the
solution with the one-step replica symmetry breaking the ir-
reducible part of the correlation function also remains un-
renormalized like in the replica-symmetric case~this is a
general property not related to SCHA!. On the other hand,
according to Eq.~58! the reducible part becomes nonzero
already in the lowest-order approximation as soon ass (1)

3(q) is finite. In SCHAs (0)(q) is always equal to zero and
therefore only the second term from Eq.~112! makes a con-
tribution toCr(R):

Cr~R!5
12m

m E d2q

~2p!2
~222 cosqR!@G0~q!2G1~q!#

'
12m

m
3H KSRj D 2lnj

R
for a!R!j,

4K ln
R

j
for j!R,

~134!

where the correlation lengthj is defined by the relation
D5j22. Summation of Eqs.~57! and ~134! shows that the
full correlation functionC(R) behaves as

C~R!'H 4K ln~R/a! for a!R!j,

4K ln~j/a!1
4K

m
ln~R/j! for j!R,

~135!

that is, atR of the order ofj a continuous crossover has to
take place between the two different values of the preloga-
rithmical factor. For the small scales the prelogarithmical
factor should be just the same as in absence of disorder.7

Substitution of Eq.~127! into Eq. ~126! allows us to ob-
tain a relation

K

m
5

D/Dc

ln~11D/Dc!
, ~136!

which shows that as soon asD/Dc.0 the ratioK/m is larger
than one~and increases with the increase ofD that is with
the decrease of temperature!. Therefore the asymptotic value
of the prelogarithmical factor at the transition line has a
minimum and discontinuous derivative.6

In terms of the Coulomb gas representation the appear-
ance of the gap with the one-step replica symmetry breaking
structure corresponds to debounding of some types of pairs
whereas the pairs of the other types remain bound. On the
total there aren(n21)/2 types of noncollinear elementary
vector charges~which can be numbered by two indices
1<a,b<n). According to the form of Eq.~113! for
s (1)(q50).0 the energyE1 of the charges for which both
indices belong to the same block becomes finite whereas the
energyE0 of the charges with the indices from the different
blocks remains logarithmically divergent. Simple compari-
son shows that the parameterm gives the fraction of the total
number of the types of charges which remain bound at the
given temperature. With a decrease of temperature down to
K50 this fraction goes to zero. Such interpretation ofm is
completely compatible with the requirement~114!.
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C. Stability analysis

To show that the solution with the replica symmetry bro-
ken by one step can be really discussed as a possible candi-
date for the description of the properties of the system one
has to check the stability of this solution. We shall do it in
the framework of a more general approach when the size of
the blockm is not fixed by the requirementd f /dm50 but is
kept as a free parameter. Strictly speaking for anym a solu-
tion of Eqs.~115! and~116! defines a solution of the matrix
equation~22! and therefore can be discussed in the same
fashion as the extremal solution.

In the case of the one-step replica symmetry breaking the
zeroth-order contribution to the Hessian retains its form~63!
@the difference with the replica-symmetric case being that
now the form of@G21(q)#ab should correspond toSab(q) of
the form ~111!# whereas the first-order contribution can be
written as

L1
ab,cd~q,q8!52

1

2
Pabcds1

~0!2
1

2
P1
abcd@s1

~1!2s1
~0!#,

~137!

where the matrixP̂1 is defined by the equation

P1
abcd5

1

2(s
8sasbscsd, ~138!

which is of the same form as Eq.~66! with the exception that
in Eq. ~138! the summation should be restricted only to those
vector chargess for which both indicesa andb belong to
the same block. We are keepings1

(0) in Eq. ~137!, although
according to Eq.~119! in infinite two-dimensional systems
s1
(0)→0, since like in the replica-symmetric case when the

stability is concerned even such vanishing quantities can be
of importance.

In the case of one-step replica symmetry breaking the two
families of eigenfunctions of the general equation~67! are
potentially dangerous. For the first of them the dependence
of gab(q)5Cabg(q) on replica indicesa andb is described
by the matrixCab[Ca8b8, the elements of which are all
equal to each other inside each ofn/m3n/m blocks of size
m3m but can be different in different blocks, satisfying
nontheless the whole set of constraints~68!. The eigenstate
belonging to this family can be described as a block replicon
since it has the same structure as replicon but is constructed
from the uniform blocks instead of separate elements. In par-
ticular, the diagonal blocks can contain only zero elements.

The matrix equation~67! for the block replicons reduces
to scalar equation which in SCHA differs from Eq.~70! for
the replica-symmetric case only by substitution:

s1⇒m2s1
~0! .

Therefore the same analysis as in Sec. IV can be applied the
only difference being that the expression fors1 given by Eq.
~76! should be substituted by

m2s1
~0!52Ym2S D

Dc1D D 2@~12m!/m#KS qmqc D
2K/m

. ~139!

Comparison with Eq.~77! shows then that the lowest eigen-
value among the eigenstates belonging to the class of block
replicons remains non-negative for

m,K[mmax~K !, ~140!

whereas form5mmax(K) the situation is marginal and the
answer depends on the relation between parameters.

The other class of eigenfunctions which are potentially
dangerous can be called the in-block replicons since each of
them can be described by the matrixCab the elements of
which are nonzero only inside of one ofn/m diagonal blocks
of sizem3m but satisfy all the constraints~68!. For this
family of eigenfunctions the matrix equation~67! also re-
duces to a scalar equation which in SCHA has a form

lg~q!5L1~q!g~q!2s1
~1!E d2q

~2p!2
g~q!, ~141!

where

L1~q!5G1
22~q!5J2~q21D!2. ~142!

Thus we have again obtained the equation with the same
structure as Eq.~70! but now there is no need to introduce
any regularization since for the finiteD both

s1
~1!52YS D

Dc1D D K ~143!

and

D5E d2q

~2p!2
1

L1~q!
5

1

4pJ2
Dc

D~Dc1D!
~144!

are finite.
According to the analysis of Sec. IV the border between

the stable and unstable region corresponds to the case when
the product ofs1

(1) andD is equal to one:

g
Dc

D S Dc

Dc1D D K11

51. ~145!

Although this equation does not containm explicitly it con-
tainsD[D(m,K) which should be chosen as a solution of
Eq. ~126! for the given values ofm andK. With the help of
Eq. ~126!, Eq. ~145! can be transformed into the equation for
mmin which defines the lower border of the stability interval

mmin~K !,m,mmax~K ! ~146!

and is of the following form:

mmin5
Dc

Dc1D~mmin ,K !
K. ~147!

Comparison of Eqs.~136!, ~140!, and ~147! allows us to
conclude that the inequality

mmin~K !,m0~K !,mmax~K !, ~148!

wherem0(K) is the value ofm for which the free energy
f (m)[ f @D(m,K),m# has a maximum is always correct.
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That means that the replica symmetry breaking solution cor-
responding to the maximum of the free energy~the extremal
solution! is always stable.

D. Unimportance of the higher-order corrections
to the replica symmetry breaking solution

As has been discussed above the difference between the
replica-symmetric and replica symmetry breaking solutions
manifests itself in the behavior of the reducible part of the
correlation function. For the replica symmetry breaking so-
lution it diverges in the same way as the irreducible part~that
is logarithmically! whereas for the replica-symmetric solu-
tion the divergence is faster~the square of logarithm!. But
the properties of two solutions have been found with the help
of different approximations. The form of the replica symme-
try breaking solution has been derived with the help of
SCHA which corresponds to keeping in the Dyson equation
only the lowest-order term in the expansion for the self-
energy matrixSab(q). On the other hand in the case of the
replica-symmetric solution, not only the second-order term
but also the important sequence of higher-order terms of this
expansion are taken into account, all of which are completely
neglected in SCHA. Thus it is definitely necessary to check
if the slower divergence of the correlation function for the
replica symmetry breaking solution is really an intrinsic
property of this solution and cannot be explained by the in-
sufficient accuracy of SCHA which neglects exactly those
terms in the expansion forSab(q) which are responsible for
the faster divergence of the correlation function of replica-
symmetric solution.

In the replica-symmetric case all the peculiarities in the
behavior of the correlation function can be related only to the
last term of Eq.~32! which does not depend on replica indi-
ces but is proportional to the self-energy functions(q). An
analogous term is present also in Eq.~112! which defines the
general form ofGab(q) for the case of one-step replica sym-
metry breaking, but in SCHA it does not play any role since
the lowest-order contribution to it@given by Eq.~121!# in the
thermodynamic limit is always equal to zero~like in the
replica-symmetric case!.

The first nonvanishing contribution tos (0)(q) appears in
the second-order inY ~also like in the replica-symmetric
case!. Sinces (0)(q) is defined by the relation~115!, and the
energy~118! of the free~unbound! charges as well as their
interaction with the other charges depend only onG1(q) @but
not onG0(q)#, only the bound pairs of charges make a finite
contribution tos2

(0)(q).
In the replica-symmetric case the total energy of two vec-

tor charges is finite only for the neutral pair. When the rep-
lica symmetry breaking gap appears, that is no longer so. For
the energy of the pair to be finite the chargessi and sj
have only to belong to the opposite nondiagonal blocks
(a i85b j8 , b i85a j8), that is the pair has to be neutral only
with respect to the index numbering the blocks. The energy
of such a pair

Ep~R!52@G2~0!2G2~R!#12G1~0!1~sisj !G1~R!
~149!

can acquire three different values depending on the product
(sisj ) ~which for the pair with the finite energy can be equal
to 0, 21 or 22). To simplify the equations in this subsec-
tion we have introduced in Eq.~149! a notation

G2~R!5
1

m
@G0~R!2G1~R!#. ~150!

The sum of the contributions from all three types of
bound pairs of charges can be written in the form

s2
~0!~q!5Y2E d2R~222 cosqR!exp$22@G2~0!2G2~R!#

22G1~0!%@expG1~R!1m21#2, ~151!

which in the limit ofm→1 reduces to Eq.~38! of the replica-
symmetric case.

The contribution to Eq.~149! related toG1(R) is of a
minor importance since it remains finite forR→` and the
logarithmical divergence ofEp(R) at large scales is related
entirely toG2(R):

Ep~R!'2@G2~R50!2G2~R!#'
4K

m
ln~R/a!. ~152!

Comparison with Eq.~40! shows that although the appear-
ance of the replica symmetry breaking gap leads to debound-
ing of some charges the interaction of the charges in the
remaining bound pairs becomes even stronger. In Sec. IV B
it has been shown that the ratioK/m is always larger than
one and therefore the expression~151! for small q can be
always approximated as

s2
~0!'Bq2, ~153!

whereB is given by a convergent integral like in the high-
temperature phase.

Note that as in the replica-symmetric case there is no
feedback in calculation of the replica-symmetric contribution
to the self-energy parts (0)(q). In the limit of n→0
s (0)(q) drops out from any expression for the charge-charge
interaction@of the form ~20!# and therefore is not present in
the rhs of Eq.~151!. Thus we have shown that in the case of
the replica symmetry breaking solution the logarithmically
divergent contribution to the correlation function related with
the presence of bound pairs also exists, but in contrast to the
replica-symmetric solution the prelogarithmical coefficient is
given by a convergent expression.

The model~7! which we consider here has one very im-
portant advantage with respect to some other problems with
similar Hamiltonian ~for example the random manifold
problem25! that it can be described in terms of a Coulomb
gas. And in a Coulomb gas description any divergence can
be associated only with the form of the interaction between
the charges or some particular complexes of charges. This
allows us to check for the appearance of the new divergen-
cies in the higher orders of the expansion simply by checking
if combining some charges together one can construct the
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objects with the lower interaction between them than the
interaction between the elementary charges.

Quite often this is not possible and that is why in some of
the Coulomb gas problems the exact form of critical behav-
ior can be found while keeping only a finite number of terms
in the renormalization-group equations. This applies, for ex-
ample, to the ordinary~scalar! Coulomb gas which is iso-
morphic to the one-component sine-Gordon model23 and also
to the variety of the vector Coulomb gases29–32including the
replica-symmetric Coulomb gas10 which describes the prop-
erties of the replica-symmetric solution of our problem.
Therefore the results reviewed in Sec. III can be expected to
give a quantitatively correct description of the replica-
symmetric solution of the Dyson equation even in the critical
region.

In the case of the replica symmetry breaking solution the
situation is more complex than in replica-symmetric case
since instead of constructing the renormalization procedure
simply for the summation of all the essential contributions to
the expression for the self-energy function it is necessary to
solve simultaneously the equation for the replica symmetry
breaking contribution to the self-energy part. But still the
application of the Coulomb gas representation allows to un-
derstand that when the second-order contribution toB is con-
vergent then all the higher-order contributions also do not
contain any divergencies~like in the high-temperature
phase!. The only source for the appearance of divergences is
related to the interaction between the bound charges and the
same interaction appears in all the orders of the expansion in
fugacity ~i.e., in the number of the charges involved!.

Thus we have shown that when the second- and higher-
order terms are included into the calculation of the reducible
part of the correlation function for the replica symmetry
breaking solution it still diverges logarithmically, that is in
the same fashion as the irreducible part. Therefore the full
correlation function~5! is also characterized by the logarith-
mical behavior, but with a larger prefactor than predicted by
SCHA ~Refs. 6 and 7! which takes into account only the
contribution from the unbound charges.

Although the inclusion of higher-order corrections turned
out to be of no importance for the form of long-distance
behavior of the correlation functionC(R) it may lead to
some quantitative changes. Unfortunately it is not easy to
check how strong they are since, if the second-order correc-
tions are taken into accounts (1)(q) cannot remain indepen-
dent of the momenta. The only thing we have been able to
check is that at low enough temperatures the second-order
correction to the free energy becomes much smaller than the
first-order contribution.

For g!1 andK!1/ln(1/g) when Eq.~130! reduces to
D;gDc the second-order term in the expression for the free
energy per replica

f 25 lim
n→0

1

n
F2 ~154!

is dominated by the contribution from the bound pairs of
charges and after substitution ofGab(q) of the form ~112!
can be estimated as

f 2;
Y2K3

D
, ~155!

where in accordance withg!1 we have used the relation
m'K. Comparison withf 1;Y shows that for such tempera-
tures f 2 / f 1;K!1 which gives some hope that the higher-
order corrections may be even smaller.

With increase of temperature the higher order corrections
become more important and can lead to the change in the
magnitude of the gap with respect to the prediction of
SCHA. To take this effect into account in a systematic way it
is necessary to construct some renormalization procedure to
describe the form of replica symmetry breaking solution. Re-
cently the attempts to describe the replica symmetry break-
ing in the model~7! with the help of the renormalization-
group formalism have been undertaken by Le Doussal and
Giamarchi33 and by Kierfeld.34 But in these works a special
situation was considered when the replica symmetry break-
ing term is artificially added to the Hamiltonian~7!. Appar-
ently such a consideration does not allow one to make any
conclusions about the spontaneous replica symmetry break-
ing when not the Hamiltonian but the correlation function
~the solution of the Dyson equation! loses the replica sym-
metry. Therefore the problem of the renormalization-group
description of the replica symmetry breaking solution still
remains to be solved.

VI. DISCUSSION

In the present work we have investigated the properties of
the different solutions of the Dyson equation which appears
in the replica approach to the simplest model of a two-
dimensional uniaxial vortex glass. In particular we have
shown that the solution with the one-step replica symmetry
breaking when it exists is always stable. On the other hand,
the replica-symmetric solution proves to be stable not only in
the high-temperature phase but also in the low-temperature
phase~at least in some finite temperature interval!. Thus the
simplest possibility, when in the low-temperature phase~in
which two solutions coexist! one is deprived of the necessity
to make the choice between them since one of these solu-
tions is unstable, is not realized.

Therefore the more general principles should be applied
and the established point of view is that in the situation with
the replica symmetry breaking one always has to look for the
solution with the maximal free energy.4 In the domain where
the solution with the one-step replica symmetry breaking ex-
ists it always has the larger free energy and since it is always
stable such choice is not in contradiction with the stability
requirements.

The coexistence of two stable solutions one of which is
replica-symmetric whereas the other corresponds to the one-
step replica symmetry breaking is known to occur also in
so-calledp-spin spherical model of a spin glass with infinite
interaction range.35 In this system the choice of the replica
symmetry breaking solution is supported also by the results
of the self-consistent dynamic approach36 which shows that
the system of equations for the response and correlation
function in the domain of the phase diagram where the rep-
lica symmetry breaking can occur does not allow for an er-
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godic solution~which can be associated with the replica-
symmetric solution of the replica representation!.

The application of the same approach to the model~1!
also predicts that in the low-temperature phase the ergodic
solution of the self-consistent dynamic equations does not
exist.15 This gives an additional support to the choice of the
replica symmetry breaking solution for the description of the
system in replica representation. But this support is probably
not so strong as in the case of thep-spin spherical spin-glass
model, since in the spin-glass model with infinite interaction
range the equations of self-consistent dynamics are supposed
to give the exact description of the system whereas in the
case of the model~1! they correspond to keeping only the
lowest-order nontrivial terms in the complete equations for
the response and correlation functions. Since SCHA can be
described in exactly the same terms~it also corresponds to
keeping only the lowest-order nontrivial term in the self-
consistent equation—but in replica representation! the pre-
dictions and limitations of both these approaches can be ex-
pected to be in some correspondence with each other.

In Sec. IV we have shown that the prediction of SCHA
for the instability of the replica-symmetric solution is invali-
dated if the renormalization of the fugacity is taken into ac-
count. Therefore it may be important to check if the same
does not happen with the prediction of the self-consistent
dynamic approach for the dynamic instability of the ergodic
solution at low temperatures.15

The higher-order corrections to the dynamic correlation
function have been considered by Goldshmidt and Schaub14

and by Tsai and Shapir.16 These authors have developed in
the framework of the dynamic description the renormaliza-
tion scheme which produces for the static correlation func-
tion the same renormalization-group equations as have been
earlier found in the replica approach for the description of
the replica-symmetric solution.10,11 Unfortunately in Refs.
14,16 the second-order contribution to the renormalization
has been found only for the renormalization of the persistent
part of the time-dependent correlation function~which al-
lows one to establish the agreement with the results of the
replica approach!, whereas in the renormalization of the re-
sponse function only the first-order contribution has been
considered. Therefore such an approach may turn out to be
of the same leval of reliabilty as the self-consistent dynamic
approach15 since both of them take into account only the
lowest order nontrivial contributions to the dynamic equa-
tions. Moreover the analysis of Refs. 14 and 16 is performed
in terms of frequency-dependent response and correlation
functions which makes it rather complicated just to check if
their time dependence is compatible with what should be
expected for the ergodic solutions of the equations for purely
relaxational dynamics~in the same fashion as is done in the
self-consistent dynamic approach15,37!.

It should be noted that although the form of the static
correlation function in the low-temperature phase predicted
by the nonergodic solution of the self-consistent dynamic
equations is the same as predicted by the replica symmetry
breaking solution of the replica representation, the param-
etersD andm which enter it correspond not to the extremal
replica symmetry breaking solution@for which D andm are
solutions of Eqs.~126! and~127!# but to the marginal replica
symmetry breaking solution which corresponds to the lower

border~147! of the stability interval form.
This property is known to be a common feature of all the

models in which the one-step replica symmetry breaking
takes place. The list of examples includes in particular
p-spin Ising38,39 and p-spin spherical35,36 versions of the
infinite-range spin glass. One of the consequences of such a
descrepancy is that in the case when the transition is discon-
tinuous~in terms of the gapD) the dynamic approach pre-
dicts the phase transition at a higher temperature that follows
from the consideration of the extremal replica symmetry
breaking solution. In the model~1! considered in this work
this happens forg.1 whereas forg<1 the gap appears in a
continuous way and the predictions of both approaches for
the position of the phase-transition line coincide with each
other. The reasons for the existence of such discrepancy be-
tween the predictions of the two methods~which for the
infinite range systems both are supposed to provide the exact
description! are not very well understood.

Recently a suggestion has been put forward40 that in the
case of one-step replica symmetry breaking one should look
not for the maximum but for the minimum of the free energy
with respect to the size of the block~among the stable solu-
tions!. Such an assumption allows one to eliminate the
discrepancy with the predictions of the self-consistent dy-
namic approach but only in the narrow part of phase diagram
in which the free energy of the marginal solution correspond-
ing tommin(K) is lower than the free energy of the replica-
symmetric solution. We have checked numerically for the
model ~7! that in the domainK,1 where the upper bound
~140! for m is not meaningless the free energy given by
SCHA is always lower for m5mmax(K) than for
m5mmin(K) and so the principle that the dynamic equations
choose the solution with the lowest free energy among the
stable solutions does not seem to work.

Since we have shown that the higher-order corrections do
not change the prediction of SCHA for the logarithmical
divergence of the correlation function in the low-temperature
phase, the numerical simulations may be helpful to distin-
guish between the replica symmetric and replica symmetry
breaking solutions. The simulations of the random phase dis-
crete Gaussian model18,41 and of the random phase sine-
Gordon model42 @both of which can be expected to demon-
strate the same properties as the model~1!# have confirmed
that in the low-temperature phase the slope of the curve
C(R) versus lnR increases with increase ofR. Although the
authors of Refs. 18, 41, and 42 make the suggestions that the
observed behavior is compatible with one or another theo-
retical prediction, the absence of the agreement between the
interpretations testifies rather that the additional simulations
may be needed to resolve the difference between the loga-
rithm squared and the logarithm with increasing slope.
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